Abstract:In autonomous driving, Vision Language Models (VLMs) excel at high-level reasoning , whereas semantic occupancy provides fine-grained details. Despite significant progress in individual fields, there is still no method that can effectively integrate both paradigms. Conventional VLMs struggle with token explosion and limited spatiotemporal reasoning, while semantic occupancy provides a unified, explicit spatial representation but is too dense to integrate efficiently with VLMs. To address these challenges and bridge the gap between VLMs and occupancy, we propose SparseOccVLA, a novel vision-language-action model that unifies scene understanding, occupancy forecasting, and trajectory planning powered by sparse occupancy queries. Starting with a lightweight Sparse Occupancy Encoder, SparseOccVLA generates compact yet highly informative sparse occupancy queries that serve as the single bridge between vision and language. These queries are aligned into the language space and reasoned by the LLM for unified scene understanding and future occupancy forecasting. Furthermore, we introduce an LLM-guided Anchor-Diffusion Planner featuring decoupled anchor scoring and denoising, as well as cross-model trajectory-condition fusion. SparseOccVLA achieves a 7% relative improvement in CIDEr over the state-of-the-art on OmniDrive-nuScenes, a 0.5 increase in mIoU score on Occ3D-nuScenes, and sets state-of-the-art open-loop planning metric on nuScenes benchmark, demonstrating its strong holistic capability.
Abstract:Multimodal 3D occupancy prediction has garnered significant attention for its potential in autonomous driving. However, most existing approaches are single-modality: camera-based methods lack depth information, while LiDAR-based methods struggle with occlusions. Current lightweight methods primarily rely on the Lift-Splat-Shoot (LSS) pipeline, which suffers from inaccurate depth estimation and fails to fully exploit the geometric and semantic information of 3D LiDAR points. Therefore, we propose a novel multimodal occupancy prediction network called SDG-OCC, which incorporates a joint semantic and depth-guided view transformation coupled with a fusion-to-occupancy-driven active distillation. The enhanced view transformation constructs accurate depth distributions by integrating pixel semantics and co-point depth through diffusion and bilinear discretization. The fusion-to-occupancy-driven active distillation extracts rich semantic information from multimodal data and selectively transfers knowledge to image features based on LiDAR-identified regions. Finally, for optimal performance, we introduce SDG-Fusion, which uses fusion alone, and SDG-KL, which integrates both fusion and distillation for faster inference. Our method achieves state-of-the-art (SOTA) performance with real-time processing on the Occ3D-nuScenes dataset and shows comparable performance on the more challenging SurroundOcc-nuScenes dataset, demonstrating its effectiveness and robustness. The code will be released at https://github.com/DzpLab/SDGOCC.