Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Understanding Robustness Lottery": A Comparative Visual Analysis of Neural Network Pruning Approaches


Jun 16, 2022
Zhimin Li, Shusen Liu, Xin Yu, Kailkhura Bhavya, Jie Cao, Diffenderfer James Daniel, Peer-Timo Bremer, Valerio Pascucci


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Reliable Graph Neural Network Explanations Through Adversarial Training


Jun 25, 2021
Donald Loveland, Shusen Liu, Bhavya Kailkhura, Anna Hiszpanski, Yong Han

* 4 pages, 3 figures, ICML Workshop on Theoretic Foundation, Criticism, and Application Trend of Explainable AI 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Explainable Deep Learning for Uncovering Actionable Scientific Insights for Materials Discovery and Design


Jul 16, 2020
Shusen Liu, Bhavya Kailkhura, Jize Zhang, Anna M. Hiszpanski, Emily Robertson, Donald Loveland, T. Yong-Jin Han


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Actionable Attribution Maps for Scientific Machine Learning


Jun 30, 2020
Shusen Liu, Bhavya Kailkhura, Jize Zhang, Anna M. Hiszpanski, Emily Robertson, Donald Loveland, T. Yong-Jin Han


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Parallelizing Training of Deep Generative Models on Massive Scientific Datasets


Oct 05, 2019
Sam Ade Jacobs, Brian Van Essen, David Hysom, Jae-Seung Yeom, Tim Moon, Rushil Anirudh, Jayaraman J. Thiagaranjan, Shusen Liu, Peer-Timo Bremer, Jim Gaffney, Tom Benson, Peter Robinson, Luc Peterson, Brian Spears


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Exploring Generative Physics Models with Scientific Priors in Inertial Confinement Fusion


Oct 03, 2019
Rushil Anirudh, Jayaraman J. Thiagarajan, Shusen Liu, Peer-Timo Bremer, Brian K. Spears

* Machine Learning for Physical Sciences Workshop at NeurIPS 2019 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Function Preserving Projection for Scalable Exploration of High-Dimensional Data


Sep 25, 2019
Shusen Liu, Rushil Anirudh, Jayaraman J. Thiagarajan, Peer-Timo Bremer


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Scalable Topological Data Analysis and Visualization for Evaluating Data-Driven Models in Scientific Applications


Jul 19, 2019
Shusen Liu, Di Wang, Dan Maljovec, Rushil Anirudh, Jayaraman J. Thiagarajan, Sam Ade Jacobs, Brian C. Van Essen, David Hysom, Jae-Seung Yeom, Jim Gaffney, Luc Peterson, Peter B. Robinson, Harsh Bhatia, Valerio Pascucci, Brian K. Spears, Peer-Timo Bremer


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Generative Counterfactual Introspection for Explainable Deep Learning


Jul 06, 2019
Shusen Liu, Bhavya Kailkhura, Donald Loveland, Yong Han


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Exploring High-Dimensional Structure via Axis-Aligned Decomposition of Linear Projections


Dec 20, 2017
Jayaraman J. Thiagarajan, Shusen Liu, Karthikeyan Natesan Ramamurthy, Peer-Timo Bremer


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email