Abstract:Polarization-resolved near-infrared imaging adds a useful optical contrast mechanism to eye tracking by measuring the polarization state of light reflected by ocular tissues in addition to its intensity. In this paper we demonstrate how this contrast can be used to enable eye tracking. Specifically, we demonstrate that a polarization-enabled eye tracking (PET) system composed of a polarization--filter--array camera paired with a linearly polarized near-infrared illuminator can reveal trackable features across the sclera and gaze-informative patterns on the cornea, largely absent in intensity-only images. Across a cohort of 346 participants, convolutional neural network based machine learning models trained on data from PET reduced the median 95th-percentile absolute gaze error by 10--16\% relative to capacity-matched intensity baselines under nominal conditions and in the presence of eyelid occlusions, eye-relief changes, and pupil-size variation. These results link light--tissue polarization effects to practical gains in human--computer interaction and position PET as a simple, robust sensing modality for future wearable devices.
Abstract:Retrieval-augmented generation (RAG) systems are increasingly adopted in clinical decision support, yet they remain methodologically blind-they retrieve evidence but cannot vet its scientific quality. A paper claiming "Antioxidant proteins decreased after alloferon treatment" and a rigorous multi-laboratory replication study will be treated as equally credible, even if the former lacked scientific rigor or was even retracted. To address this challenge, we introduce VERIRAG, a framework that makes three notable contributions: (i) the Veritable, an 11-point checklist that evaluates each source for methodological rigor, including data integrity and statistical validity; (ii) a Hard-to-Vary (HV) Score, a quantitative aggregator that weights evidence by its quality and diversity; and (iii) a Dynamic Acceptance Threshold, which calibrates the required evidence based on how extraordinary a claim is. Across four datasets-comprising retracted, conflicting, comprehensive, and settled science corpora-the VERIRAG approach consistently outperforms all baselines, achieving absolute F1 scores ranging from 0.53 to 0.65, representing a 10 to 14 point improvement over the next-best method in each respective dataset. We will release all materials necessary for reproducing our results.