Abstract:Implicit continuous models, such as functional models and implicit neural networks, are an increasingly popular method for replacing discrete data representations with continuous, high-order, and differentiable surrogates. These models offer new perspectives on the storage, transfer, and analysis of scientific data. In this paper, we introduce the first framework to directly extract complex topological features -- contours, Jacobi sets, and ridge-valley graphs -- from a type of continuous implicit model known as multivariate functional approximation (MFA). MFA replaces discrete data with continuous piecewise smooth functions. Given an MFA model as the input, our approach enables direct extraction of complex topological features from the model, without reverting to a discrete representation of the model. Our work is easily generalizable to any continuous implicit model that supports the queries of function values and high-order derivatives. Our work establishes the building blocks for performing topological data analysis and visualization on implicit continuous models.
Abstract:Large language models (LLMs) produce high-dimensional embeddings that capture rich semantic and syntactic relationships between words, sentences, and concepts. Investigating the topological structures of LLM embedding spaces via mapper graphs enables us to understand their underlying structures. Specifically, a mapper graph summarizes the topological structure of the embedding space, where each node represents a topological neighborhood (containing a cluster of embeddings), and an edge connects two nodes if their corresponding neighborhoods overlap. However, manually exploring these embedding spaces to uncover encoded linguistic properties requires considerable human effort. To address this challenge, we introduce a framework for semi-automatic annotation of these embedding properties. To organize the exploration process, we first define a taxonomy of explorable elements within a mapper graph such as nodes, edges, paths, components, and trajectories. The annotation of these elements is executed through two types of customizable LLM-based agents that employ perturbation techniques for scalable and automated analysis. These agents help to explore and explain the characteristics of mapper elements and verify the robustness of the generated explanations. We instantiate the framework within a visual analytics workspace and demonstrate its effectiveness through case studies. In particular, we replicate findings from prior research on BERT's embedding properties across various layers of its architecture and provide further observations into the linguistic properties of topological neighborhoods.
Abstract:The rapid evolution of large language models (LLMs), driven by growing parameter scales, adoption of mixture-of-experts (MoE) architectures, and expanding context lengths, imposes unprecedented demands on AI infrastructure. Traditional AI clusters face limitations in compute intensity, memory bandwidth, inter-chip communication, and latency, compounded by variable workloads and strict service-level objectives. Addressing these issues requires fundamentally redesigned hardware-software integration. This paper introduces Huawei CloudMatrix, a next-generation AI datacenter architecture, realized in the production-grade CloudMatrix384 supernode. It integrates 384 Ascend 910C NPUs and 192 Kunpeng CPUs interconnected via an ultra-high-bandwidth Unified Bus (UB) network, enabling direct all-to-all communication and dynamic pooling of resources. These features optimize performance for communication-intensive operations, such as large-scale MoE expert parallelism and distributed key-value cache access. To fully leverage CloudMatrix384, we propose CloudMatrix-Infer, an advanced LLM serving solution incorporating three core innovations: a peer-to-peer serving architecture that independently scales prefill, decode, and caching; a large-scale expert parallelism strategy supporting EP320 via efficient UB-based token dispatch; and hardware-aware optimizations including specialized operators, microbatch-based pipelining, and INT8 quantization. Evaluation with the DeepSeek-R1 model shows CloudMatrix-Infer achieves state-of-the-art efficiency: prefill throughput of 6,688 tokens/s per NPU and decode throughput of 1,943 tokens/s per NPU (<50 ms TPOT). It effectively balances throughput and latency, sustaining 538 tokens/s even under stringent 15 ms latency constraints, while INT8 quantization maintains model accuracy across benchmarks.
Abstract:Deep neural networks (DNNs) achieve state-of-the-art performance in many vision tasks, yet understanding their internal behavior remains challenging, particularly how different layers and activation channels contribute to class separability. We introduce ChannelExplorer, an interactive visual analytics tool for analyzing image-based outputs across model layers, emphasizing data-driven insights over architecture analysis for exploring class separability. ChannelExplorer summarizes activations across layers and visualizes them using three primary coordinated views: a Scatterplot View to reveal inter- and intra-class confusion, a Jaccard Similarity View to quantify activation overlap, and a Heatmap View to inspect activation channel patterns. Our technique supports diverse model architectures, including CNNs, GANs, ResNet and Stable Diffusion models. We demonstrate the capabilities of ChannelExplorer through four use-case scenarios: (1) generating class hierarchy in ImageNet, (2) finding mislabeled images, (3) identifying activation channel contributions, and(4) locating latent states' position in Stable Diffusion model. Finally, we evaluate the tool with expert users.
Abstract:Real-world machine learning models require rigorous evaluation before deployment, especially in safety-critical domains like autonomous driving and surveillance. The evaluation of machine learning models often focuses on data slices, which are subsets of the data that share a set of characteristics. Data slice finding automatically identifies conditions or data subgroups where models underperform, aiding developers in mitigating performance issues. Despite its popularity and effectiveness, data slicing for vision model validation faces several challenges. First, data slicing often needs additional image metadata or visual concepts, and falls short in certain computer vision tasks, such as object detection. Second, understanding data slices is a labor-intensive and mentally demanding process that heavily relies on the expert's domain knowledge. Third, data slicing lacks a human-in-the-loop solution that allows experts to form hypothesis and test them interactively. To overcome these limitations and better support the machine learning operations lifecycle, we introduce VISLIX, a novel visual analytics framework that employs state-of-the-art foundation models to help domain experts analyze slices in computer vision models. Our approach does not require image metadata or visual concepts, automatically generates natural language insights, and allows users to test data slice hypothesis interactively. We evaluate VISLIX with an expert study and three use cases, that demonstrate the effectiveness of our tool in providing comprehensive insights for validating object detection models.
Abstract:This survey examines the evolution of model architectures in information retrieval (IR), focusing on two key aspects: backbone models for feature extraction and end-to-end system architectures for relevance estimation. The review intentionally separates architectural considerations from training methodologies to provide a focused analysis of structural innovations in IR systems.We trace the development from traditional term-based methods to modern neural approaches, particularly highlighting the impact of transformer-based models and subsequent large language models (LLMs). We conclude by discussing emerging challenges and future directions, including architectural optimizations for performance and scalability, handling of multimodal, multilingual data, and adaptation to novel application domains beyond traditional search paradigms.
Abstract:We propose a novel framework that integrates medical image segmentation and point cloud upsampling for accurate shape reconstruction of pelvic models. Using the SAM-Med3D model for segmentation and a point cloud upsampling network trained on the MedShapeNet dataset, our method transforms sparse medical imaging data into high-resolution 3D bone models. This framework leverages prior knowledge of anatomical shapes, achieving smoother and more complete reconstructions. Quantitative evaluations using metrics such as Chamfer Distance etc, demonstrate the effectiveness of the point cloud upsampling in pelvic model. Our approach offers potential applications in reconstructing other skeletal structures, providing a robust solution for medical image analysis and statistical shape modeling.
Abstract:In recent years, point cloud upsampling has been widely applied in fields such as 3D reconstruction. Our study investigates the factors influencing point cloud upsampling on both global and local levels through representation learning. Specifically, the paper inputs global and local information of the same point cloud model object into two encoders to extract these features, fuses them, and then feeds the combined features into an upsampling decoder. The goal is to address issues of sparsity and noise in point clouds by leveraging prior knowledge from both global and local inputs. And the proposed framework can be applied to any state-of-the-art point cloud upsampling neural network. Experiments were conducted on a series of autoencoder-based models utilizing deep learning, yielding interpretability for both global and local inputs, and it has been proven in the results that our proposed framework can further improve the upsampling effect in previous SOTA works. At the same time, the Saliency Map reflects the differences between global and local feature inputs, as well as the effectiveness of training with both inputs in parallel.
Abstract:We introduce NEOviz, an interactive visualization system designed to assist planetary defense experts in the visual analysis of the movements of near-Earth objects in the Solar System that might prove hazardous to Earth. Asteroids are often discovered using optical telescopes and their trajectories are calculated from images, resulting in an inherent asymmetric uncertainty in their position and velocity. Consequently, we typically cannot determine the exact trajectory of an asteroid, and an ensemble of trajectories must be generated to estimate an asteroid's movement over time. When propagating these ensembles over decades, it is challenging to visualize the varying paths and determine their potential impact on Earth, which could cause catastrophic damage. NEOviz equips experts with the necessary tools to effectively analyze the existing catalog of asteroid observations. In particular, we present a novel approach for visualizing the 3D uncertainty region through which an asteroid travels, while providing accurate spatial context in relation to system-critical infrastructure such as Earth, the Moon, and artificial satellites. Furthermore, we use NEOviz to visualize the divergence of asteroid trajectories, capturing high-variance events in an asteroid's orbital properties. For potential impactors, we combine the 3D visualization with an uncertainty-aware impact map to illustrate the potential risks to human populations. NEOviz was developed with continuous input from members of the planetary defense community through a participatory design process. It is exemplified in three real-world use cases and evaluated via expert feedback interviews.
Abstract:Interactions and relations between objects may be pairwise or higher-order in nature, and so network-valued data are ubiquitous in the real world. The "space of networks", however, has a complex structure that cannot be adequately described using conventional statistical tools. We introduce a measure-theoretic formalism for modeling generalized network structures such as graphs, hypergraphs, or graphs whose nodes come with a partition into categorical classes. We then propose a metric that extends the Gromov-Wasserstein distance between graphs and the co-optimal transport distance between hypergraphs. We characterize the geometry of this space, thereby providing a unified theoretical treatment of generalized networks that encompasses the cases of pairwise, as well as higher-order, relations. In particular, we show that our metric is an Alexandrov space of non-negative curvature, and leverage this structure to define gradients for certain functionals commonly arising in geometric data analysis tasks. We extend our analysis to the setting where vertices have additional label information, and derive efficient computational schemes to use in practice. Equipped with these theoretical and computational tools, we demonstrate the utility of our framework in a suite of applications, including hypergraph alignment, clustering and dictionary learning from ensemble data, multi-omics alignment, as well as multiscale network alignment.