Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Simple lessons from complex learning: what a neural network model learns about cosmic structure formation

Drew Jamieson , Yin Li , Siyu He , Francisco Villaescusa-Navarro , Shirley Ho , Renan Alves de Oliveira , David N. Spergel

* 13 pages, 8 figures 

   Access Paper or Ask Questions

Field Level Neural Network Emulator for Cosmological N-body Simulations

Drew Jamieson , Yin Li , Renan Alves de Oliveira , Francisco Villaescusa-Navarro , Shirley Ho , David N. Spergel

* 11 pages, 4 figures 

   Access Paper or Ask Questions

Predicting the Thermal Sunyaev-Zel'dovich Field using Modular and Equivariant Set-Based Neural Networks

Leander Thiele , Miles Cranmer , William Coulton , Shirley Ho , David N. Spergel

* 11 pages, 5 figures; condensed version accepted at the Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021) as "Equivariant and Modular DeepSets with Applications in Cluster Cosmology" 

   Access Paper or Ask Questions

Rediscovering orbital mechanics with machine learning

Pablo Lemos , Niall Jeffrey , Miles Cranmer , Shirley Ho , Peter Battaglia

* 12 pages, 6 figures, under review 

   Access Paper or Ask Questions

Augmenting astrophysical scaling relations with machine learning : application to reducing the SZ flux-mass scatter

Digvijay Wadekar , Leander Thiele , Francisco Villaescusa-Navarro , J. Colin Hill , Miles Cranmer , David N. Spergel , Nicholas Battaglia , Daniel Anglés-Alcázar , Lars Hernquist , Shirley Ho

* Minor updates to Figs. 4 & 8. Added Fig.10. The code and data associated with this paper are available at 

   Access Paper or Ask Questions

Learned Coarse Models for Efficient Turbulence Simulation

Kimberly Stachenfeld , Drummond B. Fielding , Dmitrii Kochkov , Miles Cranmer , Tobias Pfaff , Jonathan Godwin , Can Cui , Shirley Ho , Peter Battaglia , Alvaro Sanchez-Gonzalez

   Access Paper or Ask Questions