Abstract:Finding scientifically interesting phenomena through slow, manual labeling campaigns severely limits our ability to explore the billions of galaxy images produced by telescopes. In this work, we develop a pipeline to create a semantic search engine from completely unlabeled image data. Our method leverages Vision-Language Models (VLMs) to generate descriptions for galaxy images, then contrastively aligns a pre-trained multimodal astronomy foundation model with these embedded descriptions to produce searchable embeddings at scale. We find that current VLMs provide descriptions that are sufficiently informative to train a semantic search model that outperforms direct image similarity search. Our model, AION-Search, achieves state-of-the-art zero-shot performance on finding rare phenomena despite training on randomly selected images with no deliberate curation for rare cases. Furthermore, we introduce a VLM-based re-ranking method that nearly doubles the recall for our most challenging targets in the top-100 results. For the first time, AION-Search enables flexible semantic search scalable to 140 million galaxy images, enabling discovery from previously infeasible searches. More broadly, our work provides an approach for making large, unlabeled scientific image archives semantically searchable, expanding data exploration capabilities in fields from Earth observation to microscopy. The code, data, and app are publicly available at https://github.com/NolanKoblischke/AION-Search
Abstract:Integrating text and numbers effectively is a crucial step towards enhancing Large Language Models (LLMs) capabilities in assisting in scientific tasks. While most current approaches rely on discrete tokenization of numbers, for instance, conversion to scientific notation or base 10-decomposition, a recent approach proposed a continuous numerical encoding as an inductive bias. In this paper, we build upon this approach by introducing more expressive numerical embeddings. Our method addresses key shortcomings, including the elimination of numerical artefacts and the ability to handle a wide range of magnitudes without clipping. Our work presents two key contributions. First, we employ an MLP to assign distinct directions in the embedding space to different numbers. Our second contribution is the introduction of a routing layer that differentiates between numerical and text embeddings. We hypothesise that this combined approach enables the model to distinguish between text and number distributions while maintaining its capacity for arithmetic operations. Using only a 45 M parameter encoder-decoder architecture our method achieves a $R^2$=0.9988 over a wide range of magnitude ($10^{-3},10^{8}$). In addition, we empirically observe a reduction of the numerical artefacts and biases observed compared to the baselines.