Abstract:Market making (MM) through Reinforcement Learning (RL) has attracted significant attention in financial trading. With the development of Large Language Models (LLMs), more and more attempts are being made to apply LLMs to financial areas. A simple, direct application of LLM as an agent shows significant performance. Such methods are hindered by their slow inference speed, while most of the current research has not studied LLM distillation for this specific task. To address this, we first propose the normalized fluorescent probe to study the mechanism of the LLM's feature. Based on the observation found by our investigation, we propose Cooperative Market Making (CMM), a novel framework that decouples LLM features across three orthogonal dimensions: layer, task, and data. Various student models collaboratively learn simple LLM features along with different dimensions, with each model responsible for a distinct feature to achieve knowledge distillation. Furthermore, CMM introduces an Hájek-MoE to integrate the output of the student models by investigating the contribution of different models in a kernel function-generated common feature space. Extensive experimental results on four real-world market datasets demonstrate the superiority of CMM over the current distillation method and RL-based market-making strategies.




Abstract:The remarkable potential of multi-modal large language models (MLLMs) in comprehending both vision and language information has been widely acknowledged. However, the scarcity of 3D scenes-language pairs in comparison to their 2D counterparts, coupled with the inadequacy of existing approaches in understanding of 3D scenes by LLMs, poses a significant challenge. In response, we collect and construct an extensive dataset comprising 75K instruction-response pairs tailored for 3D scenes. This dataset addresses tasks related to 3D VQA, 3D grounding, and 3D conversation. To further enhance the integration of 3D spatial information into LLMs, we introduce a novel and efficient prompt tuning paradigm, 3DMIT. This paradigm eliminates the alignment stage between 3D scenes and language and extends the instruction prompt with the 3D modality information including the entire scene and segmented objects. We evaluate the effectiveness of our method across diverse tasks in the 3D scene domain and find that our approach serves as a strategic means to enrich LLMs' comprehension of the 3D world. Our code is available at https://github.com/staymylove/3DMIT.