Abstract:Market making (MM) through Reinforcement Learning (RL) has attracted significant attention in financial trading. With the development of Large Language Models (LLMs), more and more attempts are being made to apply LLMs to financial areas. A simple, direct application of LLM as an agent shows significant performance. Such methods are hindered by their slow inference speed, while most of the current research has not studied LLM distillation for this specific task. To address this, we first propose the normalized fluorescent probe to study the mechanism of the LLM's feature. Based on the observation found by our investigation, we propose Cooperative Market Making (CMM), a novel framework that decouples LLM features across three orthogonal dimensions: layer, task, and data. Various student models collaboratively learn simple LLM features along with different dimensions, with each model responsible for a distinct feature to achieve knowledge distillation. Furthermore, CMM introduces an Hájek-MoE to integrate the output of the student models by investigating the contribution of different models in a kernel function-generated common feature space. Extensive experimental results on four real-world market datasets demonstrate the superiority of CMM over the current distillation method and RL-based market-making strategies.
Abstract:With the rapid development of electric vehicles, formula races that face high school and university students have become more popular than ever as the threshold for design and manufacturing has been lowered. In many cases, we see teams inspired by or directly using toolkits and technologies inherited from standardized commercial vehicles. These architectures are usually overly complicated for amateur applications like the races. In order to improve the efficiency and simplify the development of instrumentation, control, and analysis systems, we propose LEADS (Lightweight Embedded Assisted Driving System), a dedicated solution for such scenarios.