Abstract:Retrieval Augmented Generation (RAG) techniques aim to mitigate hallucinations in Large Language Models (LLMs). However, LLMs can still produce information that is unsupported or contradictory to the retrieved contexts. We introduce LYNX, a SOTA hallucination detection LLM that is capable of advanced reasoning on challenging real-world hallucination scenarios. To evaluate LYNX, we present HaluBench, a comprehensive hallucination evaluation benchmark, consisting of 15k samples sourced from various real-world domains. Our experiment results show that LYNX outperforms GPT-4o, Claude-3-Sonnet, and closed and open-source LLM-as-a-judge models on HaluBench. We release LYNX, HaluBench and our evaluation code for public access.
Abstract:FinanceBench is a first-of-its-kind test suite for evaluating the performance of LLMs on open book financial question answering (QA). It comprises 10,231 questions about publicly traded companies, with corresponding answers and evidence strings. The questions in FinanceBench are ecologically valid and cover a diverse set of scenarios. They are intended to be clear-cut and straightforward to answer to serve as a minimum performance standard. We test 16 state of the art model configurations (including GPT-4-Turbo, Llama2 and Claude2, with vector stores and long context prompts) on a sample of 150 cases from FinanceBench, and manually review their answers (n=2,400). The cases are available open-source. We show that existing LLMs have clear limitations for financial QA. Notably, GPT-4-Turbo used with a retrieval system incorrectly answered or refused to answer 81% of questions. While augmentation techniques such as using longer context window to feed in relevant evidence improve performance, they are unrealistic for enterprise settings due to increased latency and cannot support larger financial documents. We find that all models examined exhibit weaknesses, such as hallucinations, that limit their suitability for use by enterprises.
Abstract:The past year has seen rapid acceleration in the development of large language models (LLMs). For many tasks, there is now a wide range of open-source and open-access LLMs that are viable alternatives to proprietary models like ChatGPT. Without proper steering and safeguards, however, LLMs will readily follow malicious instructions, provide unsafe advice, and generate toxic content. This is a critical safety risk for businesses and developers. We introduce SimpleSafetyTests as a new test suite for rapidly and systematically identifying such critical safety risks. The test suite comprises 100 test prompts across five harm areas that LLMs, for the vast majority of applications, should refuse to comply with. We test 11 popular open LLMs and find critical safety weaknesses in several of them. While some LLMs do not give a single unsafe response, most models we test respond unsafely on more than 20% of cases, with over 50% unsafe responses in the extreme. Prepending a safety-emphasising system prompt substantially reduces the occurrence of unsafe responses, but does not completely stop them from happening. We recommend that developers use such system prompts as a first line of defence against critical safety risks.
Abstract:Recent works have shown considerable improvements in task-oriented dialogue (TOD) systems by utilizing pretrained large language models (LLMs) in an end-to-end manner. However, the biased behavior of each component in a TOD system and the error propagation issue in the end-to-end framework can lead to seriously biased TOD responses. Existing works of fairness only focus on the total bias of a system. In this paper, we propose a diagnosis method to attribute bias to each component of a TOD system. With the proposed attribution method, we can gain a deeper understanding of the sources of bias. Additionally, researchers can mitigate biased model behavior at a more granular level. We conduct experiments to attribute the TOD system's bias toward three demographic axes: gender, age, and race. Experimental results show that the bias of a TOD system usually comes from the response generation model.
Abstract:Unwanted and often harmful social biases are becoming ever more salient in NLP research, affecting both models and datasets. In this work, we ask: does training on demographically perturbed data lead to more fair language models? We collect a large dataset of human annotated text perturbations and train an automatic perturber on it, which we show to outperform heuristic alternatives. We find: (i) Language models (LMs) pre-trained on demographically perturbed corpora are more fair, at least, according to our current best metrics for measuring model fairness, and (ii) LMs finetuned on perturbed GLUE datasets exhibit less demographic bias on downstream tasks. We find that improved fairness does not come at the expense of accuracy. Although our findings appear promising, there are still some limitations, as well as outstanding questions about how best to evaluate the (un)fairness of large language models. We hope that this initial exploration of neural demographic perturbation will help drive more improvement towards fairer NLP.
Abstract:In this work we give a case study of an embodied machine-learning (ML) powered agent that improves itself via interactions with crowd-workers. The agent consists of a set of modules, some of which are learned, and others heuristic. While the agent is not "end-to-end" in the ML sense, end-to-end interaction is a vital part of the agent's learning mechanism. We describe how the design of the agent works together with the design of multiple annotation interfaces to allow crowd-workers to assign credit to module errors from end-to-end interactions, and to label data for individual modules. Over multiple automated human-agent interaction, credit assignment, data annotation, and model re-training and re-deployment, rounds we demonstrate agent improvement.
Abstract:At the heart of improving conversational AI is the open problem of how to evaluate conversations. Issues with automatic metrics are well known (Liu et al., 2016, arXiv:1603.08023), with human evaluations still considered the gold standard. Unfortunately, how to perform human evaluations is also an open problem: differing data collection methods have varying levels of human agreement and statistical sensitivity, resulting in differing amounts of human annotation hours and labor costs. In this work we compare five different crowdworker-based human evaluation methods and find that different methods are best depending on the types of models compared, with no clear winner across the board. While this highlights the open problems in the area, our analysis leads to advice of when to use which one, and possible future directions.
Abstract:In recent years, there have been significant advances in building end-to-end Machine Learning (ML) systems that learn at scale. But most of these systems are: (a) isolated (perception, speech, or language only); (b) trained on static datasets. On the other hand, in the field of robotics, large-scale learning has always been difficult. Supervision is hard to gather and real world physical interactions are expensive. In this work we introduce and open-source droidlet, a modular, heterogeneous agent architecture and platform. It allows us to exploit both large-scale static datasets in perception and language and sophisticated heuristics often used in robotics; and provides tools for interactive annotation. Furthermore, it brings together perception, language and action onto one platform, providing a path towards agents that learn from the richness of real world interactions.