Abstract:Parallel imaging is widely used in magnetic resonance imaging as an acceleration technology. Traditional linear reconstruction methods in parallel imaging often suffer from noise amplification. Recently, a non-linear robust artificial-neural-network for k-space interpolation (RAKI) exhibits superior noise resilience over other linear methods. However, RAKI performs poorly at high acceleration rates, and needs a large amount of autocalibration signals as the training samples. In order to tackle these issues, we propose a multi-weight method that implements multiple weighting matrices on the undersampled data, named as MW-RAKI. Enforcing multiple weighted matrices on the measurements can effectively reduce the influence of noise and increase the data constraints. Furthermore, we incorporate the strategy of multiple weighting matrixes into a residual version of RAKI, and form MW-rRAKI.Experimental compari-sons with the alternative methods demonstrated noticeably better reconstruction performances, particularly at high acceleration rates.
Abstract:Decreasing magnetic resonance (MR) image acquisition times can potentially make MR examinations more accessible. Prior arts including the deep learning models have been devoted to solving the problem of long MRI imaging time. Recently, deep generative models have exhibited great potentials in algorithm robustness and usage flexibility. Nevertheless, no existing such schemes that can be learned or employed directly to the k-space measurement. Furthermore, how do the deep generative models work well in hybrid domain is also worth to be investigated. In this work, by taking advantage of the deep en-ergy-based models, we propose a k-space and image domain collaborative generative model to comprehensively estimate the MR data from under-sampled measurement. Experimental comparisons with the state-of-the-arts demonstrated that the proposed hybrid method has less error in reconstruction and is more stable under different acceleration factors.
Abstract:Recovering high-quality images from undersampled measurements is critical for accelerated MRI reconstruction. Recently, various supervised deep learning-based MRI reconstruction methods have been developed. Despite the achieved promising performances, these methods require fully sampled reference data, the acquisition of which is resource-intensive and time-consuming. Self-supervised learning has emerged as a promising solution to alleviate the reliance on fully sampled datasets. However, existing self-supervised methods suffer from reconstruction errors due to the insufficient constraint enforced on the non-sampled data points and the error accumulation happened alongside the iterative image reconstruction process for model-driven deep learning reconstrutions. To address these challenges, we propose K2Calibrate, a K-space adaptation strategy for self-supervised model-driven MR reconstruction optimization. By iteratively calibrating the learned measurements, K2Calibrate can reduce the network's reconstruction deterioration caused by statistically dependent noise. Extensive experiments have been conducted on the open-source dataset FastMRI, and K2Calibrate achieves better results than five state-of-the-art methods. The proposed K2Calibrate is plug-and-play and can be easily integrated with different model-driven deep learning reconstruction methods.
Abstract:The integration of compressed sensing and parallel imaging (CS-PI) provides a robust mechanism for accelerating MRI acquisitions. However, most such strategies require the explicit formation of either coil sensitivity profiles or a cross-coil correlation operator, and as a result reconstruction corresponds to solving a challenging bilinear optimization problem. In this work, we present an unsupervised deep learning framework for calibration-free parallel MRI, coined universal generative modeling for parallel imaging (UGM-PI). More precisely, we make use of the merits of both wavelet transform and the adaptive iteration strategy in a unified framework. We train a powerful noise conditional score network by forming wavelet tensor as the network input at the training phase. Experimental results on both physical phantom and in vivo datasets implied that the proposed method is comparable and even superior to state-of-the-art CS-PI reconstruction approaches.
Abstract:Magnetic resonance imaging (MRI) is a widely used medical imaging modality. However, due to the limitations in hardware, scan time, and throughput, it is often clinically challenging to obtain high-quality MR images. In this article, we propose a method of using artificial intelligence to expand the channel to achieve the effect of increasing the virtual coil. The main feature of our work is utilizing dummy variable technology to expand the channel in both the image and k-space domains. The high-dimensional information formed by channel expansion is used as the prior information of parallel imaging to improve the reconstruction effect of parallel imaging. Two features are introduced, namely variable enhancement and sum of squares (SOS) objective function. Variable argumentation provides the network with more high-dimensional prior information, which is helpful for the network to extract the deep feature in-formation of the image. The SOS objective function is employed to solve the problem that k-space data is difficult to train while speeding up the convergence speed. Ablation studies and experimental results demonstrate that our method achieves significantly higher image reconstruction performance than current state-of-the-art techniques.
Abstract:A large number of coils are able to provide enhanced signal-to-noise ratio and improve imaging performance in parallel imaging. As the increasingly grow of coil number, however, it simultaneously aggravates the drawbacks of data storage and reconstruction speed, especially in some iterative reconstructions. Coil compression addresses these issues by generating fewer virtual coils. In this work, a novel variable augmented network for invertible coil compression (VAN-ICC) is presented, which utilizes inherent reversibility of normalizing-flow-based models, for better compression and invertible recovery. VAN-ICC trains invertible network by finding an invertible and bijective function, which can map the original image to the compression image. In the experiments, both fully-sampled images and under-sampled images were used to verify the effectiveness of the model. Extensive quantitative and qualitative evaluations demonstrated that, in comparison with SCC and GCC, VAN-ICC can carry through better compression effect with equal number of virtual coils. Additionally, its performance is not susceptible to different num-ber of virtual coils.
Abstract:Image reconstruction from undersampled k-space data plays an important role in accelerating the acquisition of MR data, and a lot of deep learning-based methods have been exploited recently. Despite the achieved inspiring results, the optimization of these methods commonly relies on the fully-sampled reference data, which are time-consuming and difficult to collect. To address this issue, we propose a novel self-supervised learning method. Specifically, during model optimization, two subsets are constructed by randomly selecting part of k-space data from the undersampled data and then fed into two parallel reconstruction networks to perform information recovery. Two reconstruction losses are defined on all the scanned data points to enhance the network's capability of recovering the frequency information. Meanwhile, to constrain the learned unscanned data points of the network, a difference loss is designed to enforce consistency between the two parallel networks. In this way, the reconstruction model can be properly trained with only the undersampled data. During the model evaluation, the undersampled data are treated as the inputs and either of the two trained networks is expected to reconstruct the high-quality results. The proposed method is flexible and can be employed in any existing deep learning-based method. The effectiveness of the method is evaluated on an open brain MRI dataset. Experimental results demonstrate that the proposed self-supervised method can achieve competitive reconstruction performance compared to the corresponding supervised learning method at high acceleration rates (4 and 8). The code is publicly available at \url{https://github.com/chenhu96/Self-Supervised-MRI-Reconstruction}.
Abstract:Purpose: Although recent deep energy-based generative models (EBMs) have shown encouraging results in many image generation tasks, how to take advantage of the self-adversarial cogitation in deep EBMs to boost the performance of Magnetic Resonance Imaging (MRI) reconstruction is still desired. Methods: With the successful application of deep learning in a wide range of MRI reconstruction, a line of emerging research involves formulating an optimization-based reconstruction method in the space of a generative model. Leveraging this, a novel regularization strategy is introduced in this article which takes advantage of self-adversarial cogitation of the deep energy-based model. More precisely, we advocate for alternative learning a more powerful energy-based model with maximum likelihood estimation to obtain the deep energy-based information, represented as image prior. Simultaneously, implicit inference with Langevin dynamics is a unique property of re-construction. In contrast to other generative models for reconstruction, the proposed method utilizes deep energy-based information as the image prior in reconstruction to improve the quality of image. Results: Experiment results that imply the proposed technique can obtain remarkable performance in terms of high reconstruction accuracy that is competitive with state-of-the-art methods, and does not suffer from mode collapse. Conclusion: Algorithmically, an iterative approach was presented to strengthen EBM training with the gradient of energy network. The robustness and the reproducibility of the algorithm were also experimentally validated. More importantly, the proposed reconstruction framework can be generalized for most MRI reconstruction scenarios.
Abstract:As an effective way to integrate the information contained in multiple medical images under different modalities, medical image synthesis and fusion have emerged in various clinical applications such as disease diagnosis and treatment planning. In this paper, an invertible and variable augmented network (iVAN) is proposed for medical image synthesis and fusion. In iVAN, the channel number of the network input and output is the same through variable augmentation technology, and data relevance is enhanced, which is conducive to the generation of characterization information. Meanwhile, the invertible network is used to achieve the bidirectional inference processes. Due to the invertible and variable augmentation schemes, iVAN can not only be applied to the mappings of multi-input to one-output and multi-input to multi-output, but also be applied to one-input to multi-output. Experimental results demonstrated that the proposed method can obtain competitive or superior performance in comparison to representative medical image synthesis and fusion methods.
Abstract:This work presents an unsupervised deep learning scheme that exploiting high-dimensional assisted score-based generative model for color image restoration tasks. Considering that the sample number and internal dimension in score-based generative model have key influence on estimating the gradients of data distribution, two different high-dimensional ways are proposed: The channel-copy transformation increases the sample number and the pixel-scale transformation decreases feasible space dimension. Subsequently, a set of high-dimensional tensors represented by these transformations are used to train the network through denoising score matching. Then, sampling is performed by annealing Langevin dynamics and alternative data-consistency update. Furthermore, to alleviate the difficulty of learning high-dimensional representation, a progressive strategy is proposed to leverage the performance. The proposed unsupervised learning and iterative restoration algo-rithm, which involves a pre-trained generative network to obtain prior, has transparent and clear interpretation compared to other data-driven approaches. Experimental results on demosaicking and inpainting conveyed the remarkable performance and diversity of our proposed method.