Abstract:Tabular data remains ubiquitous across domains despite growing use of images and texts for machine learning. While deep learning models like convolutional neural networks and transformers achieve strong performance on tabular data, they require extensive data preprocessing, tuning, and resources, limiting accessibility and scalability. This work develops an innovative approach based on a structured state-space model (SSM), MambaTab, for tabular data. SSMs have strong capabilities for efficiently extracting effective representations from data with long-range dependencies. MambaTab leverages Mamba, an emerging SSM variant, for end-to-end supervised learning on tables. Compared to state-of-the-art baselines, MambaTab delivers superior performance while requiring significantly fewer parameters and minimal preprocessing, as empirically validated on diverse benchmark datasets. MambaTab's efficiency, scalability, generalizability, and predictive gains signify it as a lightweight, "out-of-the-box" solution for diverse tabular data with promise for enabling wider practical applications.
Abstract:Motivated by the maneuvering target tracking with sensors such as radar and sonar, this paper considers the joint and recursive estimation of the dynamic state and the time-varying process noise covariance in nonlinear state space models. Due to the nonlinearity of the models and the non-conjugate prior, the state estimation problem is generally intractable as it involves integrals of general nonlinear functions and unknown process noise covariance, resulting in the posterior probability distribution functions lacking closed-form solutions. This paper presents a recursive solution for joint nonlinear state estimation and model parameters identification based on the approximate Bayesian inference principle. The stochastic search variational inference is adopted to offer a flexible, accurate, and effective approximation of the posterior distributions. We make two contributions compared to existing variational inference-based noise adaptive filtering methods. First, we introduce an auxiliary latent variable to decouple the latent variables of dynamic state and process noise covariance, thereby improving the flexibility of the posterior inference. Second, we split the variational lower bound optimization into conjugate and non-conjugate parts, whereas the conjugate terms are directly optimized that admit a closed-form solution and the non-conjugate terms are optimized by natural gradients, achieving the trade-off between inference speed and accuracy. The performance of the proposed method is verified on radar target tracking applications by both simulated and real-world data.
Abstract:Achieving integrated sensing and communication (ISAC) via uplink transmission is challenging due to the unknown waveform and the coupling of communication and sensing echoes. In this paper, a joint uplink communication and imaging system is proposed for the first time, where a reconfigurable intelligent surface (RIS) is used to manipulate the electromagnetic signals for echo decoupling at the base station (BS). Aiming to enhance the transmission gain in desired directions and generate required radiation pattern in the region of interest (RoI), a phase optimization problem for RIS is formulated, which is high dimensional and nonconvex with discrete constraints. To tackle this problem, a back propagation based phase design scheme for both continuous and discrete phase models is developed. Moreover, the echo decoupling problem is tackled using the Bayesian method with the factor graph technique, where the problem is represented by a graph model which consists of difficult local functions. Based on the graph model, a message-passing algorithm is derived, which can efficiently cooperate with the adaptive sparse Bayesian learning (SBL) to achieve joint communication and imaging. Numerical results show that the proposed method approaches the relevant lower bound asymptotically, and the communication performance can be enhanced with the utilization of imaging echoes.
Abstract:Due to the ability to reshape the wireless communication environment in a cost- and energy-efficient manner, the reconfigurable intelligent surface (RIS) has garnered substantial attention. However, the explicit power consumption model of RIS and measurement validation, have received far too little attention. Therefore, in this work, we propose the RIS power consumption model and implement the practical measurement validation with various RISs. Measurement results illustrate the generality and accuracy of the proposed model. Firstly, we verify that RIS has static power consumption, and present the experiment results. Secondly, we confirm that the dynamic power consumption of the varactor-diode based RIS is almost negligible. Finally but significantly, we model the quantitative relationship between the dynamic power consumption of the PIN-diode based RIS and the polarization mode, controllable bit resolution, working status of RIS, which is validated by practical experimental results.
Abstract:Interpreting critical variables involved in complex biological processes related to survival time can help understand prediction from survival models, evaluate treatment efficacy, and develop new therapies for patients. Currently, the predictive results of deep learning (DL)-based models are better than or as good as standard survival methods, they are often disregarded because of their lack of transparency and little interpretability, which is crucial to their adoption in clinical applications. In this paper, we introduce a novel, easily deployable approach, called EXplainable CEnsored Learning (EXCEL), to iteratively exploit critical variables and simultaneously implement (DL) model training based on these variables. First, on a toy dataset, we illustrate the principle of EXCEL; then, we mathematically analyze our proposed method, and we derive and prove tight generalization error bounds; next, on two semi-synthetic datasets, we show that EXCEL has good anti-noise ability and stability; finally, we apply EXCEL to a variety of real-world survival datasets including clinical data and genetic data, demonstrating that EXCEL can effectively identify critical features and achieve performance on par with or better than the original models. It is worth pointing out that EXCEL is flexibly deployed in existing or emerging models for explainable survival data in the presence of right censoring.
Abstract:The disruption of circadian rhythm is a cardinal symptom for Alzheimer's disease (AD) patients. The full circadian rhythm orchestration of gene expression in the human brain and its inherent associations with AD remain largely unknown. We present a novel comprehensive approach, PRIME, to detect and analyze rhythmic oscillation patterns in untimed high-dimensional gene expression data across multiple datasets. To demonstrate the utility of PRIME, firstly, we validate it by a time course expression dataset from mouse liver as a cross-species and cross-organ validation. Then, we apply it to study oscillation patterns in untimed genome-wide gene expression from 19 human brain regions of controls and AD patients. Our findings reveal clear, synchronized oscillation patterns in 15 pairs of brain regions of control, while these oscillation patterns either disappear or dim for AD. It is worth noting that PRIME discovers the circadian rhythmic patterns without requiring the sample's timestamps. The codes for PRIME, along with codes to reproduce the figures in this paper, are available at https://github.com/xinxingwu-uk/PRIME.
Abstract:Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations. For NMF, a sparser solution implies better parts-based representation.However, current NMF methods do not always generate sparse solutions.In this paper, we propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness.Moreover, we propose a novel column-wisely sparse norm, named $\ell_{2,\log}$-(pseudo) norm to enhance the robustness of the proposed method.The $\ell_{2,\log}$-(pseudo) norm is invariant, continuous, and differentiable.For the $\ell_{2,\log}$ regularized shrinkage problem, we derive a closed-form solution, which can be used for other general problems.Efficient multiplicative updating rules are developed for the optimization, which theoretically guarantees the convergence of the objective value sequence.Extensive experimental results confirm the effectiveness of the proposed method, as well as the enhanced sparseness and robustness.
Abstract:In this paper, we propose a novel nonconvex approach to robust principal component analysis for HSI denoising, which focuses on simultaneously developing more accurate approximations to both rank and column-wise sparsity for the low-rank and sparse components, respectively. In particular, the new method adopts the log-determinant rank approximation and a novel $\ell_{2,\log}$ norm, to restrict the local low-rank or column-wisely sparse properties for the component matrices, respectively. For the $\ell_{2,\log}$-regularized shrinkage problem, we develop an efficient, closed-form solution, which is named $\ell_{2,\log}$-shrinkage operator. The new regularization and the corresponding operator can be generally used in other problems that require column-wise sparsity. Moreover, we impose the spatial-spectral total variation regularization in the log-based nonconvex RPCA model, which enhances the global piece-wise smoothness and spectral consistency from the spatial and spectral views in the recovered HSI. Extensive experiments on both simulated and real HSIs demonstrate the effectiveness of the proposed method in denoising HSIs.
Abstract:A reconfigurable intelligent surface (RIS) is capable of manipulating electromagnetic waves with its flexibly configurable unit cells, thus is an appealing technology to resist fast fading caused by multi-path in wireless communications. In this paper, a two-path propagation model for RIS-assisted wireless communications is proposed by considering both the direct path from the transmitter to the receiver and the assisted path provided by the RIS. The proposed propagation model unveils that the phase shifts of RISs can be optimized by appropriate configuration for multi-path fading mitigation. In particular, four types of RISs with different configuration capabilities are introduced and their performances on improving received signal power in virtue of the assisted path to resist fast fading are compared through extensive simulation results. In addition, an RIS operating at 35 GHz is used for experimental measurement. The experimental results verify that an RIS has the ability to combat fast fading and thus improves the receiving performance, which may lay a foundation for further researches.
Abstract:Multiple-input multiple-output (MIMO) signaling is one of the key technologies of current mobile communication systems. However, the complex and expensive radio frequency (RF) chains have always limited the increase of MIMO scale. In this paper, we propose a MIMO transmission architecture based on a dual-polarized reconfigurable intelligent surface (RIS), which can directly achieve modulation and transmission of multichannel signals without the need for conventional RF chains. Compared with previous works, the proposed architecture can improve the integration of RIS-based transmission systems. A prototype of the dual-polarized RIS-based MIMO transmission system is built and the experimental results confirm the feasibility of the proposed architecture. The dual-polarized RIS-based MIMO transmission architecture provides a promising solution for realizing low-cost ultra-massive MIMO towards future networks.