Abstract:Mental disorders pose a global challenge, aggravated by the shortage of qualified mental health professionals. Mental disorder prediction from social media posts by current LLMs is challenging due to the complexities of sequential text data and the limited context length of language models. Current language model-based approaches split a single data instance into multiple chunks to compensate for limited context size. The predictive model is then applied to each chunk individually, and the most voted output is selected as the final prediction. This results in the loss of inter-post dependencies and important time variant information, leading to poor performance. We propose a novel framework which first compresses the large sequence of chronologically ordered social media posts into a series of numbers. We then use this time variant representation for mental disorder classification. We demonstrate the generalization capabilities of our framework by outperforming the current SOTA in three different mental conditions: depression, self-harm, and anorexia, with an absolute improvement of 5% in the F1 score. We investigate the situation where current data instances fall within the context length of language models and present empirical results highlighting the importance of temporal properties of textual data. Furthermore, we utilize the proposed framework for a cross-domain study, exploring commonalities across disorders and the possibility of inter-domain data usage.
Abstract:The detection of depression through non-verbal cues has gained significant attention. Previous research predominantly centred on identifying depression within the confines of controlled laboratory environments, often with the supervision of psychologists or counsellors. Unfortunately, datasets generated in such controlled settings may struggle to account for individual behaviours in real-life situations. In response to this limitation, we present the Extended D-vlog dataset, encompassing a collection of 1, 261 YouTube vlogs. Additionally, the emergence of large language models (LLMs) like GPT3.5, and GPT4 has sparked interest in their potential they can act like mental health professionals. Yet, the readiness of these LLM models to be used in real-life settings is still a concern as they can give wrong responses that can harm the users. We introduce a virtual agent serving as an initial contact for mental health patients, offering Cognitive Behavioral Therapy (CBT)-based responses. It comprises two core functions: 1. Identifying depression in individuals, and 2. Delivering CBT-based therapeutic responses. Our Mistral model achieved impressive scores of 70.1% and 30.9% for distortion assessment and classification, along with a Bert score of 88.7%. Moreover, utilizing the TVLT model on our Multimodal Extended D-vlog Dataset yielded outstanding results, with an impressive F1-score of 67.8%
Abstract:In the realm of multimodal tasks, Visual Question Answering (VQA) plays a crucial role by addressing natural language questions grounded in visual content. Knowledge-Based Visual Question Answering (KBVQA) advances this concept by adding external knowledge along with images to respond to questions. We introduce an approach for KBVQA, augmenting the existing vision-language transformer encoder-decoder (OFA) model. Our main contribution involves enhancing questions by incorporating relevant external knowledge extracted from knowledge graphs, using a dynamic triple extraction method. We supply a flexible number of triples from the knowledge graph as context, tailored to meet the requirements for answering the question. Our model, enriched with knowledge, demonstrates an average improvement of 4.75\% in Exact Match Score over the state-of-the-art on three different KBVQA datasets. Through experiments and analysis, we demonstrate that furnishing variable triples for each question improves the reasoning capabilities of the language model in contrast to supplying a fixed number of triples. This is illustrated even for recent large language models. Additionally, we highlight the model's generalization capability by showcasing its SOTA-beating performance on a small dataset, achieved through straightforward fine-tuning.
Abstract:In the digital world, memes present a unique challenge for content moderation due to their potential to spread harmful content. Although detection methods have improved, proactive solutions such as intervention are still limited, with current research focusing mostly on text-based content, neglecting the widespread influence of multimodal content like memes. Addressing this gap, we present \textit{MemeGuard}, a comprehensive framework leveraging Large Language Models (LLMs) and Visual Language Models (VLMs) for meme intervention. \textit{MemeGuard} harnesses a specially fine-tuned VLM, \textit{VLMeme}, for meme interpretation, and a multimodal knowledge selection and ranking mechanism (\textit{MKS}) for distilling relevant knowledge. This knowledge is then employed by a general-purpose LLM to generate contextually appropriate interventions. Another key contribution of this work is the \textit{\textbf{I}ntervening} \textit{\textbf{C}yberbullying in \textbf{M}ultimodal \textbf{M}emes (ICMM)} dataset, a high-quality, labeled dataset featuring toxic memes and their corresponding human-annotated interventions. We leverage \textit{ICMM} to test \textit{MemeGuard}, demonstrating its proficiency in generating relevant and effective responses to toxic memes.
Abstract:Metaphors are a common communication tool used in our day-to-day life. The detection and generation of metaphors in textual form have been studied extensively but metaphors in other forms have been under-explored. Recent studies have shown that Vision-Language (VL) models cannot understand visual metaphors in memes and adverts. As of now, no probing studies have been done that involve complex language phenomena like metaphors with videos. Hence, we introduce a new VL task of describing the metaphors present in the videos in our work. To facilitate this novel task, we construct and release a manually created dataset with 705 videos and 2115 human-written captions, along with a new metric called Average Concept Distance (ACD), to automatically evaluate the creativity of the metaphors generated. We also propose a novel low-resource video metaphor captioning system: GIT-LLaVA, which obtains comparable performance to SoTA video language models on the proposed task. We perform a comprehensive analysis of existing video language models on this task and publish our dataset, models, and benchmark results to enable further research.
Abstract:In an era of rapidly evolving internet technology, the surge in multimodal content, including videos, has expanded the horizons of online communication. However, the detection of toxic content in this diverse landscape, particularly in low-resource code-mixed languages, remains a critical challenge. While substantial research has addressed toxic content detection in textual data, the realm of video content, especially in non-English languages, has been relatively underexplored. This paper addresses this research gap by introducing a benchmark dataset, the first of its kind, consisting of 931 videos with 4021 code-mixed Hindi-English utterances collected from YouTube. Each utterance within this dataset has been meticulously annotated for toxicity, severity, and sentiment labels. We have developed an advanced Multimodal Multitask framework built for Toxicity detection in Video Content by leveraging Large Language Models (LLMs), crafted for the primary objective along with the additional tasks of conducting sentiment and severity analysis. ToxVidLLM incorporates three key modules the Encoder module, Cross-Modal Synchronization module, and Multitask module crafting a generic multimodal LLM customized for intricate video classification tasks. Our experiments reveal that incorporating multiple modalities from the videos substantially enhances the performance of toxic content detection by achieving an Accuracy and Weighted F1 score of 94.29% and 94.35%, respectively.
Abstract:While neural approaches using deep learning are the state-of-the-art for natural language processing (NLP) today, pre-neural algorithms and approaches still find a place in NLP textbooks and courses of recent years. In this paper, we compare two introductory NLP courses taught in Australia and India, and examine how Transformer and pre-neural approaches are balanced within the lecture plan and assessments of the courses. We also draw parallels with the objects-first and objects-later debate in CS1 education. We observe that pre-neural approaches add value to student learning by building an intuitive understanding of NLP problems, potential solutions and even Transformer-based models themselves. Despite pre-neural approaches not being state-of-the-art, the paper makes a case for their inclusion in NLP courses today.
Abstract:In e-commerce, opinion summarization is the process of summarizing the consensus opinions found in product reviews. However, the potential of additional sources such as product description and question-answers (QA) has been considered less often. Moreover, the absence of any supervised training data makes this task challenging. To address this, we propose a novel synthetic dataset creation (SDC) strategy that leverages information from reviews as well as additional sources for selecting one of the reviews as a pseudo-summary to enable supervised training. Our Multi-Encoder Decoder framework for Opinion Summarization (MEDOS) employs a separate encoder for each source, enabling effective selection of information while generating the summary. For evaluation, due to the unavailability of test sets with additional sources, we extend the Amazon, Oposum+, and Flipkart test sets and leverage ChatGPT to annotate summaries. Experiments across nine test sets demonstrate that the combination of our SDC approach and MEDOS model achieves on average a 14.5% improvement in ROUGE-1 F1 over the SOTA. Moreover, comparative analysis underlines the significance of incorporating additional sources for generating more informative summaries. Human evaluations further indicate that MEDOS scores relatively higher in coherence and fluency with 0.41 and 0.5 (-1 to 1) respectively, compared to existing models. To the best of our knowledge, we are the first to generate opinion summaries leveraging additional sources in a self-supervised setting.
Abstract:How does the importance of positional encoding in pre-trained language models (PLMs) vary across languages with different morphological complexity? In this paper, we offer the first study addressing this question, encompassing 23 morphologically diverse languages and 5 different downstream tasks. We choose two categories of tasks: syntactic tasks (part-of-speech tagging, named entity recognition, dependency parsing) and semantic tasks (natural language inference, paraphrasing). We consider language-specific BERT models trained on monolingual corpus for our investigation. The main experiment consists of nullifying the effect of positional encoding during fine-tuning and investigating its impact across various tasks and languages. Our findings demonstrate that the significance of positional encoding diminishes as the morphological complexity of a language increases. Across all experiments, we observe clustering of languages according to their morphological typology - with analytic languages at one end and synthetic languages at the opposite end.
Abstract:The pervasive influence of social biases in language data has sparked the need for benchmark datasets that capture and evaluate these biases in Large Language Models (LLMs). Existing efforts predominantly focus on English language and the Western context, leaving a void for a reliable dataset that encapsulates India's unique socio-cultural nuances. To bridge this gap, we introduce IndiBias, a comprehensive benchmarking dataset designed specifically for evaluating social biases in the Indian context. We filter and translate the existing CrowS-Pairs dataset to create a benchmark dataset suited to the Indian context in Hindi language. Additionally, we leverage LLMs including ChatGPT and InstructGPT to augment our dataset with diverse societal biases and stereotypes prevalent in India. The included bias dimensions encompass gender, religion, caste, age, region, physical appearance, and occupation. We also build a resource to address intersectional biases along three intersectional dimensions. Our dataset contains 800 sentence pairs and 300 tuples for bias measurement across different demographics. The dataset is available in English and Hindi, providing a size comparable to existing benchmark datasets. Furthermore, using IndiBias we compare ten different language models on multiple bias measurement metrics. We observed that the language models exhibit more bias across a majority of the intersectional groups.