Salient object detection (SOD) in panoramic video is still in the initial exploration stage. The indirect application of 2D video SOD method to the detection of salient objects in panoramic video has many unmet challenges, such as low detection accuracy, high model complexity, and poor generalization performance. To overcome these hurdles, we design an Inter-Layer Attention (ILA) module, an Inter-Layer weight (ILW) module, and a Bi-Modal Attention (BMA) module. Based on these modules, we propose a Spatial-Temporal Dual-Mode Mixed Flow Network (STDMMF-Net) that exploits the spatial flow of panoramic video and the corresponding optical flow for SOD. First, the ILA module calculates the attention between adjacent level features of consecutive frames of panoramic video to improve the accuracy of extracting salient object features from the spatial flow. Then, the ILW module quantifies the salient object information contained in the features of each level to improve the fusion efficiency of the features of each level in the mixed flow. Finally, the BMA module improves the detection accuracy of STDMMF-Net. A large number of subjective and objective experimental results testify that the proposed method demonstrates better detection accuracy than the state-of-the-art (SOTA) methods. Moreover, the comprehensive performance of the proposed method is better in terms of memory required for model inference, testing time, complexity, and generalization performance.
End-to-end person search aims to jointly detect and re-identify a target person in raw scene images with a unified model. The detection task unifies all persons while the re-id task discriminates different identities, resulting in conflict optimal objectives. Existing works proposed to decouple end-to-end person search to alleviate such conflict. Yet these methods are still sub-optimal on one or two of the sub-tasks due to their partially decoupled models, which limits the overall person search performance. In this paper, we propose to fully decouple person search towards optimal person search. A task-incremental person search network is proposed to incrementally construct an end-to-end model for the detection and re-id sub-task, which decouples the model architecture for the two sub-tasks. The proposed task-incremental network allows task-incremental training for the two conflicting tasks. This enables independent learning for different objectives thus fully decoupled the model for persons earch. Comprehensive experimental evaluations demonstrate the effectiveness of the proposed fully decoupled models for end-to-end person search.
The widespread adoption of DNNs in NLP software has highlighted the need for robustness. Researchers proposed various automatic testing techniques for adversarial test cases. However, existing methods suffer from two limitations: weak error-discovering capabilities, with success rates ranging from 0% to 24.6% for BERT-based NLP software, and time inefficiency, taking 177.8s to 205.28s per test case, making them challenging for time-constrained scenarios. To address these issues, this paper proposes LEAP, an automated test method that uses LEvy flight-based Adaptive Particle swarm optimization integrated with textual features to generate adversarial test cases. Specifically, we adopt Levy flight for population initialization to increase the diversity of generated test cases. We also design an inertial weight adaptive update operator to improve the efficiency of LEAP's global optimization of high-dimensional text examples and a mutation operator based on the greedy strategy to reduce the search time. We conducted a series of experiments to validate LEAP's ability to test NLP software and found that the average success rate of LEAP in generating adversarial test cases is 79.1%, which is 6.1% higher than the next best approach (PSOattack). While ensuring high success rates, LEAP significantly reduces time overhead by up to 147.6s compared to other heuristic-based methods. Additionally, the experimental results demonstrate that LEAP can generate more transferable test cases and significantly enhance the robustness of DNN-based systems.
Deep neural networks (DNNs) have been widely and successfully adopted and deployed in various applications of speech recognition. Recently, a few works revealed that these models are vulnerable to backdoor attacks, where the adversaries can implant malicious prediction behaviors into victim models by poisoning their training process. In this paper, we revisit poison-only backdoor attacks against speech recognition. We reveal that existing methods are not stealthy since their trigger patterns are perceptible to humans or machine detection. This limitation is mostly because their trigger patterns are simple noises or separable and distinctive clips. Motivated by these findings, we propose to exploit elements of sound ($e.g.$, pitch and timbre) to design more stealthy yet effective poison-only backdoor attacks. Specifically, we insert a short-duration high-pitched signal as the trigger and increase the pitch of remaining audio clips to `mask' it for designing stealthy pitch-based triggers. We manipulate timbre features of victim audios to design the stealthy timbre-based attack and design a voiceprint selection module to facilitate the multi-backdoor attack. Our attacks can generate more `natural' poisoned samples and therefore are more stealthy. Extensive experiments are conducted on benchmark datasets, which verify the effectiveness of our attacks under different settings ($e.g.$, all-to-one, all-to-all, clean-label, physical, and multi-backdoor settings) and their stealthiness. The code for reproducing main experiments are available at \url{https://github.com/HanboCai/BadSpeech_SoE}.
Keyword spotting (KWS) based on deep neural networks (DNNs) has achieved massive success in voice control scenarios. However, training of such DNN-based KWS systems often requires significant data and hardware resources. Manufacturers often entrust this process to a third-party platform. This makes the training process uncontrollable, where attackers can implant backdoors in the model by manipulating third-party training data. An effective backdoor attack can force the model to make specified judgments under certain conditions, i.e., triggers. In this paper, we design a backdoor attack scheme based on Voiceprint Selection and Voice Conversion, abbreviated as VSVC. Experimental results demonstrated that VSVC is feasible to achieve an average attack success rate close to 97% in four victim models when poisoning less than 1% of the training data.
Keyword spotting (KWS) has been widely used in various speech control scenarios. The training of KWS is usually based on deep neural networks and requires a large amount of data. Manufacturers often use third-party data to train KWS. However, deep neural networks are not sufficiently interpretable to manufacturers, and attackers can manipulate third-party training data to plant backdoors during the model training. An effective backdoor attack can force the model to make specified judgments under certain conditions, i.e., triggers. In this paper, we design a backdoor attack scheme based on Pitch Boosting and Sound Masking for KWS, called PBSM. Experimental results demonstrated that PBSM is feasible to achieve an average attack success rate close to 90% in three victim models when poisoning less than 1% of the training data.
Deep Learning systems (DL) based on Deep Neural Networks (DNNs) are more and more used in various aspects of our life, including unmanned vehicles, speech processing, and robotics. However, due to the limited dataset and the dependence on manual labeling data, DNNs often fail to detect their erroneous behaviors, which may lead to serious problems. Several approaches have been proposed to enhance the input examples for testing DL systems. However, they have the following limitations. First, they design and generate adversarial examples from the perspective of model, which may cause low generalization ability when they are applied to other models. Second, they only use surface feature constraints to judge the difference between the adversarial example generated and the original example. The deep feature constraints, which contain high-level semantic information, such as image object category and scene semantics are completely neglected. To address these two problems, in this paper, we propose CAGFuzz, a Coverage-guided Adversarial Generative Fuzzing testing approach, which generates adversarial examples for a targeted DNN to discover its potential defects. First, we train an adversarial case generator (AEG) from the perspective of general data set. Second, we extract the depth features of the original and adversarial examples, and constrain the adversarial examples by cosine similarity to ensure that the semantic information of adversarial examples remains unchanged. Finally, we retrain effective adversarial examples to improve neuron testing coverage rate. Based on several popular data sets, we design a set of dedicated experiments to evaluate CAGFuzz. The experimental results show that CAGFuzz can improve the neuron coverage rate, detect hidden errors, and also improve the accuracy of the target DNN.