Abstract:Backdoor attacks pose a significant threat to deep learning models by implanting hidden vulnerabilities that can be activated by malicious inputs. While numerous defenses have been proposed to mitigate these attacks, the heterogeneous landscape of evaluation methodologies hinders fair comparison between defenses. This work presents a systematic (meta-)analysis of backdoor defenses through a comprehensive literature review and empirical evaluation. We analyzed 183 backdoor defense papers published between 2018 and 2025 across major AI and security venues, examining the properties and evaluation methodologies of these defenses. Our analysis reveals significant inconsistencies in experimental setups, evaluation metrics, and threat model assumptions in the literature. Through extensive experiments involving three datasets (MNIST, CIFAR-100, ImageNet-1K), four model architectures (ResNet-18, VGG-19, ViT-B/16, DenseNet-121), 16 representative defenses, and five commonly used attacks, totaling over 3\,000 experiments, we demonstrate that defense effectiveness varies substantially across different evaluation setups. We identify critical gaps in current evaluation practices, including insufficient reporting of computational overhead and behavior under benign conditions, bias in hyperparameter selection, and incomplete experimentation. Based on our findings, we provide concrete challenges and well-motivated recommendations to standardize and improve future defense evaluations. Our work aims to equip researchers and industry practitioners with actionable insights for developing, assessing, and deploying defenses to different systems.
Abstract:Backdoor attacks in machine learning have drawn significant attention for their potential to compromise models stealthily, yet most research has focused on homogeneous data such as images. In this work, we propose a novel backdoor attack on tabular data, which is particularly challenging due to the presence of both numerical and categorical features. Our key idea is a novel technique to convert categorical values into floating-point representations. This approach preserves enough information to maintain clean-model accuracy compared to traditional methods like one-hot or ordinal encoding. By doing this, we create a gradient-based universal perturbation that applies to all features, including categorical ones. We evaluate our method on five datasets and four popular models. Our results show up to a 100% attack success rate in both white-box and black-box settings (including real-world applications like Vertex AI), revealing a severe vulnerability for tabular data. Our method is shown to surpass the previous works like Tabdoor in terms of performance, while remaining stealthy against state-of-the-art defense mechanisms. We evaluate our attack against Spectral Signatures, Neural Cleanse, Beatrix, and Fine-Pruning, all of which fail to defend successfully against it. We also verify that our attack successfully bypasses popular outlier detection mechanisms.




Abstract:Recent research on backdoor stealthiness focuses mainly on indistinguishable triggers in input space and inseparable backdoor representations in feature space, aiming to circumvent backdoor defenses that examine these respective spaces. However, existing backdoor attacks are typically designed to resist a specific type of backdoor defense without considering the diverse range of defense mechanisms. Based on this observation, we pose a natural question: Are current backdoor attacks truly a real-world threat when facing diverse practical defenses? To answer this question, we examine 12 common backdoor attacks that focus on input-space or feature-space stealthiness and 17 diverse representative defenses. Surprisingly, we reveal a critical blind spot: Backdoor attacks designed to be stealthy in input and feature spaces can be mitigated by examining backdoored models in parameter space. To investigate the underlying causes behind this common vulnerability, we study the characteristics of backdoor attacks in the parameter space. Notably, we find that input- and feature-space attacks introduce prominent backdoor-related neurons in parameter space, which are not thoroughly considered by current backdoor attacks. Taking comprehensive stealthiness into account, we propose a novel supply-chain attack called Grond. Grond limits the parameter changes by a simple yet effective module, Adversarial Backdoor Injection (ABI), which adaptively increases the parameter-space stealthiness during the backdoor injection. Extensive experiments demonstrate that Grond outperforms all 12 backdoor attacks against state-of-the-art (including adaptive) defenses on CIFAR-10, GTSRB, and a subset of ImageNet. In addition, we show that ABI consistently improves the effectiveness of common backdoor attacks.




Abstract:Backdoor attacks on deep learning represent a recent threat that has gained significant attention in the research community. Backdoor defenses are mainly based on backdoor inversion, which has been shown to be generic, model-agnostic, and applicable to practical threat scenarios. State-of-the-art backdoor inversion recovers a mask in the feature space to locate prominent backdoor features, where benign and backdoor features can be disentangled. However, it suffers from high computational overhead, and we also find that it overly relies on prominent backdoor features that are highly distinguishable from benign features. To tackle these shortcomings, this paper improves backdoor feature inversion for backdoor detection by incorporating extra neuron activation information. In particular, we adversarially increase the loss of backdoored models with respect to weights to activate the backdoor effect, based on which we can easily differentiate backdoored and clean models. Experimental results demonstrate our defense, BAN, is 1.37$\times$ (on CIFAR-10) and 5.11$\times$ (on ImageNet200) more efficient with 9.99% higher detect success rate than the state-of-the-art defense BTI-DBF. Our code and trained models are publicly available.\url{https://anonymous.4open.science/r/ban-4B32}




Abstract:Federated Transfer Learning (FTL) is the most general variation of Federated Learning. According to this distributed paradigm, a feature learning pre-step is commonly carried out by only one party, typically the server, on publicly shared data. After that, the Federated Learning phase takes place to train a classifier collaboratively using the learned feature extractor. Each involved client contributes by locally training only the classification layers on a private training set. The peculiarity of an FTL scenario makes it hard to understand whether poisoning attacks can be developed to craft an effective backdoor. State-of-the-art attack strategies assume the possibility of shifting the model attention toward relevant features introduced by a forged trigger injected in the input data by some untrusted clients. Of course, this is not feasible in FTL, as the learned features are fixed once the server performs the pre-training step. Consequently, in this paper, we investigate this intriguing Federated Learning scenario to identify and exploit a vulnerability obtained by combining eXplainable AI (XAI) and dataset distillation. In particular, the proposed attack can be carried out by one of the clients during the Federated Learning phase of FTL by identifying the optimal local for the trigger through XAI and encapsulating compressed information of the backdoor class. Due to its behavior, we refer to our approach as a focused backdoor approach (FB-FTL for short) and test its performance by explicitly referencing an image classification scenario. With an average 80% attack success rate, obtained results show the effectiveness of our attack also against existing defenses for Federated Learning.
Abstract:Sponge attacks aim to increase the energy consumption and computation time of neural networks deployed on hardware accelerators. Existing sponge attacks can be performed during inference via sponge examples or during training via Sponge Poisoning. Sponge examples leverage perturbations added to the model's input to increase energy and latency, while Sponge Poisoning alters the objective function of a model to induce inference-time energy/latency effects. In this work, we propose a novel sponge attack called SpongeNet. SpongeNet is the first sponge attack that is performed directly on the parameters of a pre-trained model. Our experiments show that SpongeNet can successfully increase the energy consumption of vision models with fewer samples required than Sponge Poisoning. Our experiments indicate that poisoning defenses are ineffective if not adjusted specifically for the defense against Sponge Poisoning (i.e., they decrease batch normalization bias values). Our work shows that SpongeNet is more effective on StarGAN than the state-of-the-art. Additionally, SpongeNet is stealthier than the previous Sponge Poisoning attack as it does not require significant changes in the victim model's weights. Our experiments indicate that the SpongeNet attack can be performed even when an attacker has access to only 1% of the entire dataset and reach up to 11% energy increase.
Abstract:This year, we witnessed a rise in the use of Large Language Models, especially when combined with applications like chatbot assistants. Safety mechanisms and specialized training procedures are put in place to prevent improper responses from these assistants. In this work, we bypass these measures for ChatGPT and Bard (and, to some extent, Bing chat) by making them impersonate complex personas with opposite characteristics as those of the truthful assistants they are supposed to be. We start by creating elaborate biographies of these personas, which we then use in a new session with the same chatbots. Our conversation followed a role-play style to get the response the assistant was not allowed to provide. By making use of personas, we show that the response that is prohibited is actually provided, making it possible to obtain unauthorized, illegal, or harmful information. This work shows that by using adversarial personas, one can overcome safety mechanisms set out by ChatGPT and Bard. It also introduces several ways of activating such adversarial personas, altogether showing that both chatbots are vulnerable to this kind of attack.
Abstract:Deep neural networks (DNNs) have shown great promise in various domains. Alongside these developments, vulnerabilities associated with DNN training, such as backdoor attacks, are a significant concern. These attacks involve the subtle insertion of triggers during model training, allowing for manipulated predictions. More recently, DNNs for tabular data have gained increasing attention due to the rise of transformer models. Our research presents a comprehensive analysis of backdoor attacks on tabular data using DNNs, particularly focusing on transformer-based networks. Given the inherent complexities of tabular data, we explore the challenges of embedding backdoors. Through systematic experimentation across benchmark datasets, we uncover that transformer-based DNNs for tabular data are highly susceptible to backdoor attacks, even with minimal feature value alterations. Our results indicate nearly perfect attack success rates (approx100%) by introducing novel backdoor attack strategies to tabular data. Furthermore, we evaluate several defenses against these attacks, identifying Spectral Signatures as the most effective one. Our findings highlight the urgency to address such vulnerabilities and provide insights into potential countermeasures for securing DNN models against backdoors on tabular data.




Abstract:Optical Character Recognition (OCR) is a widely used tool to extract text from scanned documents. Today, the state-of-the-art is achieved by exploiting deep neural networks. However, the cost of this performance is paid at the price of system vulnerability. For instance, in backdoor attacks, attackers compromise the training phase by inserting a backdoor in the victim's model that will be activated at testing time by specific patterns while leaving the overall model performance intact. This work proposes a backdoor attack for OCR resulting in the injection of non-readable characters from malicious input images. This simple but effective attack exposes the state-of-the-art OCR weakness, making the extracted text correct to human eyes but simultaneously unusable for the NLP application that uses OCR as a preprocessing step. Experimental results show that the attacked models successfully output non-readable characters for around 90% of the poisoned instances without harming their performance for the remaining instances.




Abstract:Federated learning enables collaborative training of machine learning models by keeping the raw data of the involved workers private. One of its main objectives is to improve the models' privacy, security, and scalability. Vertical Federated Learning (VFL) offers an efficient cross-silo setting where a few parties collaboratively train a model without sharing the same features. In such a scenario, classification labels are commonly considered sensitive information held exclusively by one (active) party, while other (passive) parties use only their local information. Recent works have uncovered important flaws of VFL, leading to possible label inference attacks under the assumption that the attacker has some, even limited, background knowledge on the relation between labels and data. In this work, we are the first (to the best of our knowledge) to investigate label inference attacks on VFL using a zero-background knowledge strategy. To concretely formulate our proposal, we focus on Graph Neural Networks (GNNs) as a target model for the underlying VFL. In particular, we refer to node classification tasks, which are widely studied, and GNNs have shown promising results. Our proposed attack, BlindSage, provides impressive results in the experiments, achieving nearly 100% accuracy in most cases. Even when the attacker has no information about the used architecture or the number of classes, the accuracy remained above 85% in most instances. Finally, we observe that well-known defenses cannot mitigate our attack without affecting the model's performance on the main classification task.