Shitz
Abstract:Bayesian Neural Networks (BNNs) can overcome the problem of overconfidence that plagues traditional frequentist deep neural networks, and are hence considered to be a key enabler for reliable AI systems. However, conventional hardware realizations of BNNs are resource intensive, requiring the implementation of random number generators for synaptic sampling. Owing to their inherent stochasticity during programming and read operations, nanoscale memristive devices can be directly leveraged for sampling, without the need for additional hardware resources. In this paper, we introduce a novel Phase Change Memory (PCM)-based hardware implementation for BNNs with binary synapses. The proposed architecture consists of separate weight and noise planes, in which PCM cells are configured and operated to represent the nominal values of weights and to generate the required noise for sampling, respectively. Using experimentally observed PCM noise characteristics, for the exemplary Breast Cancer Dataset classification problem, we obtain hardware accuracy and expected calibration error matching that of an 8-bit fixed-point (FxP8) implementation, with projected savings of over 9$\times$ in terms of core area transistor count.
Abstract:Adaptive gating plays a key role in temporal data processing via classical recurrent neural networks (RNN), as it facilitates retention of past information necessary to predict the future, providing a mechanism that preserves invariance to time warping transformations. This paper builds on quantum recurrent neural networks (QRNNs), a dynamic model with quantum memory, to introduce a novel class of temporal data processing quantum models that preserve invariance to time-warping transformations of the (classical) input-output sequences. The model, referred to as time warping-invariant QRNN (TWI-QRNN), augments a QRNN with a quantum-classical adaptive gating mechanism that chooses whether to apply a parameterized unitary transformation at each time step as a function of the past samples of the input sequence via a classical recurrent model. The TWI-QRNN model class is derived from first principles, and its capacity to successfully implement time-warping transformations is experimentally demonstrated on examples with classical or quantum dynamics.
Abstract:Optimal resource allocation in modern communication networks calls for the optimization of objective functions that are only accessible via costly separate evaluations for each candidate solution. The conventional approach carries out the optimization of resource-allocation parameters for each system configuration, characterized, e.g., by topology and traffic statistics, using global search methods such as Bayesian optimization (BO). These methods tend to require a large number of iterations, and hence a large number of key performance indicator (KPI) evaluations. In this paper, we propose the use of meta-learning to transfer knowledge from data collected from related, but distinct, configurations in order to speed up optimization on new network configurations. Specifically, we combine meta-learning with BO, as well as with multi-armed bandit (MAB) optimization, with the latter having the potential advantage of operating directly on a discrete search space. Furthermore, we introduce novel contextual meta-BO and meta-MAB algorithms, in which transfer of knowledge across configurations occurs at the level of a mapping from graph-based contextual information to resource-allocation parameters. Experiments for the problem of open loop power control (OLPC) parameter optimization for the uplink of multi-cell multi-antenna systems provide insights into the potential benefits of meta-learning and contextual optimization.
Abstract:Type-based multiple access (TBMA) is a semantics-aware multiple access protocol for remote inference. In TBMA, codewords are reused across transmitting sensors, with each codeword being assigned to a different observation value. Existing TBMA protocols are based on fixed shared codebooks and on conventional maximum-likelihood or Bayesian decoders, which require knowledge of the distributions of observations and channels. In this letter, we propose a novel design principle for TBMA based on the information bottleneck (IB). In the proposed IB-TBMA protocol, the shared codebook is jointly optimized with a decoder based on artificial neural networks (ANNs), so as to adapt to source, observations, and channel statistics based on data only. We also introduce the Compressed IB-TBMA (CB-TBMA) protocol, which improves IB-TBMA by enabling a reduction in the number of codewords via an IB-inspired clustering phase. Numerical results demonstrate the importance of a joint design of codebook and neural decoder, and validate the benefits of codebook compression.
Abstract:When used in complex engineered systems, such as communication networks, artificial intelligence (AI) models should be not only as accurate as possible, but also well calibrated. A well-calibrated AI model is one that can reliably quantify the uncertainty of its decisions, assigning high confidence levels to decisions that are likely to be correct and low confidence levels to decisions that are likely to be erroneous. This paper investigates the application of conformal prediction as a general framework to obtain AI models that produce decisions with formal calibration guarantees. Conformal prediction transforms probabilistic predictors into set predictors that are guaranteed to contain the correct answer with a probability chosen by the designer. Such formal calibration guarantees hold irrespective of the true, unknown, distribution underlying the generation of the variables of interest, and can be defined in terms of ensemble or time-averaged probabilities. In this paper, conformal prediction is applied for the first time to the design of AI for communication systems in conjunction to both frequentist and Bayesian learning, focusing on demodulation, modulation classification, and channel prediction.
Abstract:Simulating quantum channels is a fundamental primitive in quantum computing, since quantum channels define general (trace-preserving) quantum operations. An arbitrary quantum channel cannot be exactly simulated using a finite-dimensional programmable quantum processor, making it important to develop optimal approximate simulation techniques. In this paper, we study the challenging setting in which the channel to be simulated varies adversarially with time. We propose the use of matrix exponentiated gradient descent (MEGD), an online convex optimization method, and analytically show that it achieves a sublinear regret in time. Through experiments, we validate the main results for time-varying dephasing channels using a programmable generalized teleportation processor.
Abstract:Commonly adopted in the manufacturing and aerospace sectors, digital twin (DT) platforms are increasingly seen as a promising paradigm to control, monitor, and analyze software-based, "open", communication systems. Notably, DT platforms provide a sandbox in which to test artificial intelligence (AI) solutions for communication systems, potentially reducing the need to collect data and test algorithms in the field, i.e., on the physical twin (PT). A key challenge in the deployment of DT systems is to ensure that virtual control optimization, monitoring, and analysis at the DT are safe and reliable, avoiding incorrect decisions caused by "model exploitation". To address this challenge, this paper presents a general Bayesian framework with the aim of quantifying and accounting for model uncertainty at the DT that is caused by limitations in the amount and quality of data available at the DT from the PT. In the proposed framework, the DT builds a Bayesian model of the communication system, which is leveraged to enable core DT functionalities such as control via multi-agent reinforcement learning (MARL), monitoring of the PT for anomaly detection, prediction, data-collection optimization, and counterfactual analysis. To exemplify the application of the proposed framework, we specifically investigate a case-study system encompassing multiple sensing devices that report to a common receiver. Experimental results validate the effectiveness of the proposed Bayesian framework as compared to standard frequentist model-based solutions.
Abstract:Bayesian Federated Learning (FL) offers a principled framework to account for the uncertainty caused by limitations in the data available at the nodes implementing collaborative training. In Bayesian FL, nodes exchange information about local posterior distributions over the model parameters space. This paper focuses on Bayesian FL implemented in a device-to-device (D2D) network via Decentralized Stochastic Gradient Langevin Dynamics (DSGLD), a recently introduced gradient-based Markov Chain Monte Carlo (MCMC) method. Based on the observation that DSGLD applies random Gaussian perturbations of model parameters, we propose to leverage channel noise on the D2D links as a mechanism for MCMC sampling. The proposed approach is compared against a conventional implementation of frequentist FL based on compression and digital transmission, highlighting advantages and limitations.
Abstract:Commonly adopted in the manufacturing and aerospace sectors, digital twin (DT) platforms are increasingly seen as a promising paradigm to control and monitor software-based, "open", communication systems, which play the role of the physical twin (PT). In the general framework presented in this work, the DT builds a Bayesian model of the communication system, which is leveraged to enable core DT functionalities such as control via multi-agent reinforcement learning (MARL) and monitoring of the PT for anomaly detection. We specifically investigate the application of the proposed framework to a simple case-study system encompassing multiple sensing devices that report to a common receiver. The Bayesian model trained at the DT has the key advantage of capturing epistemic uncertainty regarding the communication system, e.g., regarding current traffic conditions, which arise from limited PT-to-DT data transfer. Experimental results validate the effectiveness of the proposed Bayesian framework as compared to standard frequentist model-based solutions.
Abstract:Consider a processor having access only to meta-data consisting of the timings of data packets and acknowledgment (ACK) packets from all nodes in a network. The meta-data report the source node of each packet, but not the destination nodes or the contents of the packets. The goal of the processor is to infer the network topology based solely on such information. Prior work leveraged causality metrics to identify which links are active. If the data timings and ACK timings of two nodes -- say node 1 and node 2, respectively -- are causally related, this may be taken as evidence that node 1 is communicating to node 2 (which sends back ACK packets to node 1). This paper starts with the observation that packet losses can weaken the causality relationship between data and ACK timing streams. To obviate this problem, a new Expectation Maximization (EM)-based algorithm is introduced -- EM-causality discovery algorithm (EM-CDA) -- which treats packet losses as latent variables. EM-CDA iterates between the estimation of packet losses and the evaluation of causality metrics. The method is validated through extensive experiments in wireless sensor networks on the NS-3 simulation platform.