Abstract:Large Language Models (LLMs) have shown significant promise in various applications, including zero-shot and few-shot learning. However, their performance can be hampered by inherent biases. Instead of traditionally sought methods that aim to minimize or correct these biases, this study introduces a novel methodology named ``bias-kNN''. This approach capitalizes on the biased outputs, harnessing them as primary features for kNN and supplementing with gold labels. Our comprehensive evaluations, spanning diverse domain text classification datasets and different GPT-2 model sizes, indicate the adaptability and efficacy of the ``bias-kNN'' method. Remarkably, this approach not only outperforms conventional in-context learning in few-shot scenarios but also demonstrates robustness across a spectrum of samples, templates and verbalizers. This study, therefore, presents a unique perspective on harnessing biases, transforming them into assets for enhanced model performance.
Abstract:Voice conversion refers to transferring speaker identity with well-preserved content. Better disentanglement of speech representations leads to better voice conversion. Recent studies have found that phonetic information from input audio has the potential ability to well represent content. Besides, the speaker-style modeling with pre-trained models making the process more complex. To tackle these issues, we introduce a new method named "CTVC" which utilizes disentangled speech representations with contrastive learning and time-invariant retrieval. Specifically, a similarity-based compression module is used to facilitate a more intimate connection between the frame-level hidden features and linguistic information at phoneme-level. Additionally, a time-invariant retrieval is proposed for timbre extraction based on multiple segmentations and mutual information. Experimental results demonstrate that "CTVC" outperforms previous studies and improves the sound quality and similarity of converted results.
Abstract:In recent years, the field of talking faces generation has attracted considerable attention, with certain methods adept at generating virtual faces that convincingly imitate human expressions. However, existing methods face challenges related to limited generalization, particularly when dealing with challenging identities. Furthermore, methods for editing expressions are often confined to a singular emotion, failing to adapt to intricate emotions. To overcome these challenges, this paper proposes EmoTalker, an emotionally editable portraits animation approach based on the diffusion model. EmoTalker modifies the denoising process to ensure preservation of the original portrait's identity during inference. To enhance emotion comprehension from text input, Emotion Intensity Block is introduced to analyze fine-grained emotions and strengths derived from prompts. Additionally, a crafted dataset is harnessed to enhance emotion comprehension within prompts. Experiments show the effectiveness of EmoTalker in generating high-quality, emotionally customizable facial expressions.
Abstract:Existing emotional speech synthesis methods often utilize an utterance-level style embedding extracted from reference audio, neglecting the inherent multi-scale property of speech prosody. We introduce ED-TTS, a multi-scale emotional speech synthesis model that leverages Speech Emotion Diarization (SED) and Speech Emotion Recognition (SER) to model emotions at different levels. Specifically, our proposed approach integrates the utterance-level emotion embedding extracted by SER with fine-grained frame-level emotion embedding obtained from SED. These embeddings are used to condition the reverse process of the denoising diffusion probabilistic model (DDPM). Additionally, we employ cross-domain SED to accurately predict soft labels, addressing the challenge of a scarcity of fine-grained emotion-annotated datasets for supervising emotional TTS training.
Abstract:Most existing neural-based text-to-speech methods rely on extensive datasets and face challenges under low-resource condition. In this paper, we introduce a novel semi-supervised text-to-speech synthesis model that learns from both paired and unpaired data to address this challenge. The key component of the proposed model is a dynamic quantized representation module, which is integrated into a sequential autoencoder. When given paired data, the module incorporates a trainable codebook that learns quantized representations under the supervision of the paired data. However, due to the limited paired data in low-resource scenario, these paired data are difficult to cover all phonemes. Then unpaired data is fed to expand the dynamic codebook by adding quantized representation vectors that are sufficiently distant from the existing ones during training. Experiments show that with less than 120 minutes of paired data, the proposed method outperforms existing methods in both subjective and objective metrics.
Abstract:Better disentanglement of speech representation is essential to improve the quality of voice conversion. Recently contrastive learning is applied to voice conversion successfully based on speaker labels. However, the performance of model will reduce in conversion between similar speakers. Hence, we propose an augmented negative sample selection to address the issue. Specifically, we create hard negative samples based on the proposed speaker fusion module to improve learning ability of speaker encoder. Furthermore, considering the fine-grain modeling of speaker style, we employ a reference encoder to extract fine-grained style and conduct the augmented contrastive learning on global style. The experimental results show that the proposed method outperforms previous work in voice conversion tasks.
Abstract:This paper proposes a talking face generation method named "CP-EB" that takes an audio signal as input and a person image as reference, to synthesize a photo-realistic people talking video with head poses controlled by a short video clip and proper eye blinking embedding. It's noted that not only the head pose but also eye blinking are both important aspects for deep fake detection. The implicit control of poses by video has already achieved by the state-of-art work. According to recent research, eye blinking has weak correlation with input audio which means eye blinks extraction from audio and generation are possible. Hence, we propose a GAN-based architecture to extract eye blink feature from input audio and reference video respectively and employ contrastive training between them, then embed it into the concatenated features of identity and poses to generate talking face images. Experimental results show that the proposed method can generate photo-realistic talking face with synchronous lips motions, natural head poses and blinking eyes.
Abstract:The Retrieval Question Answering (ReQA) task employs the retrieval-augmented framework, composed of a retriever and generator. The generator formulates the answer based on the documents retrieved by the retriever. Incorporating Large Language Models (LLMs) as generators is beneficial due to their advanced QA capabilities, but they are typically too large to be fine-tuned with budget constraints while some of them are only accessible via APIs. To tackle this issue and further improve ReQA performance, we propose a trainable Pluggable Reward-Driven Contextual Adapter (PRCA), keeping the generator as a black box. Positioned between the retriever and generator in a Pluggable manner, PRCA refines the retrieved information by operating in a token-autoregressive strategy via maximizing rewards of the reinforcement learning phase. Our experiments validate PRCA's effectiveness in enhancing ReQA performance on three datasets by up to 20% improvement to fit black-box LLMs into existing frameworks, demonstrating its considerable potential in the LLMs era.
Abstract:Due to the powerful capabilities demonstrated by large language model (LLM), there has been a recent surge in efforts to integrate them with AI agents to enhance their performance. In this paper, we have explored the core differences and characteristics between LLM-based AI agents and traditional AI agents. Specifically, we first compare the fundamental characteristics of these two types of agents, clarifying the significant advantages of LLM-based agents in handling natural language, knowledge storage, and reasoning capabilities. Subsequently, we conducted an in-depth analysis of the key components of AI agents, including planning, memory, and tool use. Particularly, for the crucial component of memory, this paper introduced an innovative classification scheme, not only departing from traditional classification methods but also providing a fresh perspective on the design of an AI agent's memory system. We firmly believe that in-depth research and understanding of these core components will lay a solid foundation for the future advancement of AI agent technology. At the end of the paper, we provide directional suggestions for further research in this field, with the hope of offering valuable insights to scholars and researchers in the field.
Abstract:Most existing sandstorm image enhancement methods are based on traditional theory and prior knowledge, which often restrict their applicability in real-world scenarios. In addition, these approaches often adopt a strategy of color correction followed by dust removal, which makes the algorithm structure too complex. To solve the issue, we introduce a novel image restoration model, named all-in-one sandstorm removal network (AOSR-Net). This model is developed based on a re-formulated sandstorm scattering model, which directly establishes the image mapping relationship by integrating intermediate parameters. Such integration scheme effectively addresses the problems of over-enhancement and weak generalization in the field of sand dust image enhancement. Experimental results on synthetic and real-world sandstorm images demonstrate the superiority of the proposed AOSR-Net over state-of-the-art (SOTA) algorithms.