Abstract:Graph neural networks (GNNs) have recently grown in popularity in the field of artificial intelligence due to their unique ability to ingest relatively unstructured data types as input data. Although some elements of the GNN architecture are conceptually similar in operation to traditional neural networks (and neural network variants), other elements represent a departure from traditional deep learning techniques. This tutorial exposes the power and novelty of GNNs to the average deep learning enthusiast by collating and presenting details on the motivations, concepts, mathematics, and applications of the most common types of GNNs. Importantly, we present this tutorial concisely, alongside worked code examples, and at an introductory pace, thus providing a practical and accessible guide to understanding and using GNNs.
Abstract:Detecting baggage threats is one of the most difficult tasks, even for expert officers. Many researchers have developed computer-aided screening systems to recognize these threats from the baggage X-ray scans. However, all of these frameworks are limited in identifying the contraband items under extreme occlusion. This paper presents a novel instance segmentation framework that utilizes trainable structure tensors to highlight the contours of the occluded and cluttered contraband items (by scanning multiple predominant orientations), while simultaneously suppressing the irrelevant baggage content. The proposed framework has been extensively tested on four publicly available X-ray datasets where it outperforms the state-of-the-art frameworks in terms of mean average precision scores. Furthermore, to the best of our knowledge, it is the only framework that has been validated on combined grayscale and colored scans obtained from four different types of X-ray scanners.
Abstract:Modern deep learning methods have equipped researchers and engineers with incredibly powerful tools to tackle problems that previously seemed impossible. However, since deep learning methods operate as black boxes, the uncertainty associated with their predictions is often challenging to quantify. Bayesian statistics offer a formalism to understand and quantify the uncertainty associated with deep neural networks predictions. This paper provides a tutorial for researchers and scientists who are using machine learning, especially deep learning, with an overview of the relevant literature and a complete toolset to design, implement, train, use and evaluate Bayesian neural networks.
Abstract:A simple yet effective architectural design of radial basis function neural networks (RBFNN) makes them amongst the most popular conventional neural networks. The current generation of radial basis function neural network is equipped with multiple kernels which provide significant performance benefits compared to the previous generation using only a single kernel. In existing multi-kernel RBF algorithms, multi-kernel is formed by the convex combination of the base/primary kernels. In this paper, we propose a novel multi-kernel RBFNN in which every base kernel has its own (local) weight. This novel flexibility in the network provides better performance such as faster convergence rate, better local minima and resilience against stucking in poor local minima. These performance gains are achieved at a competitive computational complexity compared to the contemporary multi-kernel RBF algorithms. The proposed algorithm is thoroughly analysed for performance gain using mathematical and graphical illustrations and also evaluated on three different types of problems namely: (i) pattern classification, (ii) system identification and (iii) function approximation. Empirical results clearly show the superiority of the proposed algorithm compared to the existing state-of-the-art multi-kernel approaches.
Abstract:Deep learning has demonstrated state-of-the-art performance for a variety of challenging computer vision tasks. On one hand, this has enabled deep visual models to pave the way for a plethora of critical applications like disease prognostics and smart surveillance. On the other, deep learning has also been found vulnerable to adversarial attacks, which calls for new techniques to defend deep models against these attacks. Among the attack algorithms, the black-box schemes are of serious practical concern since they only need publicly available knowledge of the targeted model. We carefully analyze the inherent weakness of deep models in black-box settings where the attacker may develop the attack using a model similar to the targeted model. Based on our analysis, we introduce a novel gradient regularization scheme that encourages the internal representation of a deep model to be orthogonal to another, even if the architectures of the two models are similar. Our unique constraint allows a model to concomitantly endeavour for higher accuracy while maintaining near orthogonal alignment of gradients with respect to a reference model. Detailed empirical study verifies that controlled misalignment of gradients under our orthogonality objective significantly boosts a model's robustness against transferable black-box adversarial attacks. In comparison to regular models, the orthogonal models are significantly more robust to a range of $l_p$ norm bounded perturbations. We verify the effectiveness of our technique on a variety of large-scale models.
Abstract:Financial implications of written reviews provide great incentives for businesses to pay fraudsters to write or use bots to generate fraud reviews. The promising performance of Deep Neural Networks (DNNs) in text classification, has attracted research to use them for fraud review detection. However, the lack of trusted labeled data has limited the performance of the current solutions in detecting fraud reviews. Unsupervised and semi-supervised methods are among the most applicable methods to deal with the data scarcity problem. Generative Adversarial Network (GAN) as a semi-supervised method has demonstrated to be effective for data augmentation purposes. The state-of-the-art solution utilizes GAN to overcome the data limitation problem. However, it fails to incorporate the behavioral clues in both fraud generation and detection. Besides, the state-of-the-art approach suffers from a common limitation in the training convergence of the GAN, slowing down the training procedure. In this work, we propose a regularised GAN for fraud review detection that makes use of both review text and review rating scores. Scores are incorporated through Information Gain Maximization in to the loss function for two reasons. One is to generate near-authentic and more human like score-correlated reviews. The other is to improve the stability of the GAN. Experimental results have shown better convergence of the regulated GAN. In addition, the scores are also used in combination with word embeddings of review text as input for the discriminators for better performance. Results show that the proposed framework relatively outperformed existing state-of-the-art framework; namely FakeGAN; in terms of AP by 7%, and 5% on the Yelp and TripAdvisor datasets, respectively.
Abstract:Fraud review detection is a hot research topic inrecent years. The Cold-start is a particularly new but significant problem referring to the failure of a detection system to recognize the authenticity of a new user. State-of-the-art solutions employ a translational knowledge graph embedding approach (TransE) to model the interaction of the components of a review system. However, these approaches suffer from the limitation of TransEin handling N-1 relations and the narrow scope of a single classification task, i.e., detecting fraudsters only. In this paper, we model a review system as a Heterogeneous InformationNetwork (HIN) which enables a unique representation to every component and performs graph inductive learning on the review data through aggregating features of nearby nodes. HIN with graph induction helps to address the camouflage issue (fraudsterswith genuine reviews) which has shown to be more severe when it is coupled with cold-start, i.e., new fraudsters with genuine first reviews. In this research, instead of focusing only on one component, detecting either fraud reviews or fraud users (fraudsters), vector representations are learnt for each component, enabling multi-component classification. In other words, we are able to detect fraud reviews, fraudsters, and fraud-targeted items, thus the name of our approach DFraud3. DFraud3 demonstrates a significant accuracy increase of 13% over the state of the art on Yelp.
Abstract:Estimating depth from RGB images is a long-standing ill-posed problem, which has been explored for decades by the computer vision, graphics, and machine learning communities. Among the existing techniques, stereo matching remains one of the most widely used in the literature due to its strong connection to the human binocular system. Traditionally, stereo-based depth estimation has been addressed through matching hand-crafted features across multiple images. Despite the extensive amount of research, these traditional techniques still suffer in the presence of highly textured areas, large uniform regions, and occlusions. Motivated by their growing success in solving various 2D and 3D vision problems, deep learning for stereo-based depth estimation has attracted growing interest from the community, with more than 150 papers published in this area between 2014 and 2019. This new generation of methods has demonstrated a significant leap in performance, enabling applications such as autonomous driving and augmented reality. In this article, we provide a comprehensive survey of this new and continuously growing field of research, summarize the most commonly used pipelines, and discuss their benefits and limitations. In retrospect of what has been achieved so far, we also conjecture what the future may hold for deep learning-based stereo for depth estimation research.
Abstract:This paper proposes a novel concept to directly match feature descriptors extracted from 2D images with feature descriptors extracted from 3D point clouds. We use this concept to directly localize images in a 3D point cloud. We generate a dataset of matching 2D and 3D points and their corresponding feature descriptors, which is used to learn a Descriptor-Matcher classifier. To localize the pose of an image at test time, we extract keypoints and feature descriptors from the query image. The trained Descriptor-Matcher is then used to match the features from the image and the point cloud. The locations of the matched features are used in a robust pose estimation algorithm to predict the location and orientation of the query image. We carried out an extensive evaluation of the proposed method for indoor and outdoor scenarios and with different types of point clouds to verify the feasibility of our approach. Experimental results demonstrate that direct matching of feature descriptors from images and point clouds is not only a viable idea but can also be reliably used to estimate the 6-DOF poses of query cameras in any type of 3D point cloud in an unconstrained manner with high precision.
Abstract:In the last two decades, baggage scanning has globally become one of the prime aviation security concerns. Manual screening of the baggage items is tedious, error-prone, and compromise privacy. Hence, many researchers have developed X-ray imagery-based autonomous systems to address these shortcomings. This paper presents a cascaded structure tensor framework that can automatically extract and recognize suspicious items in heavily occluded and cluttered baggage. The proposed framework is unique, as it intelligently extracts each object by iteratively picking contour-based transitional information from different orientations and uses only a single feed-forward convolutional neural network for the recognition. The proposed framework has been rigorously evaluated using a total of 1,067,381 X-ray scans from publicly available GDXray and SIXray datasets where it outperformed the state-of-the-art solutions by achieving the mean average precision score of 0.9343 on GDXray and 0.9595 on SIXray for recognizing the highly cluttered and overlapping suspicious items. Furthermore, the proposed framework computationally achieves 4.76\% superior run-time performance as compared to the existing solutions based on publicly available object detectors