Abstract:Current approaches for video grounding propose kinds of complex architectures to capture the video-text relations, and have achieved impressive improvements. However, it is hard to learn the complicated multi-modal relations by only architecture designing in fact. In this paper, we introduce a novel Support-set Based Cross-Supervision (Sscs) module which can improve existing methods during training phase without extra inference cost. The proposed Sscs module contains two main components, i.e., discriminative contrastive objective and generative caption objective. The contrastive objective aims to learn effective representations by contrastive learning, while the caption objective can train a powerful video encoder supervised by texts. Due to the co-existence of some visual entities in both ground-truth and background intervals, i.e., mutual exclusion, naively contrastive learning is unsuitable to video grounding. We address the problem by boosting the cross-supervision with the support-set concept, which collects visual information from the whole video and eliminates the mutual exclusion of entities. Combined with the original objectives, Sscs can enhance the abilities of multi-modal relation modeling for existing approaches. We extensively evaluate Sscs on three challenging datasets, and show that our method can improve current state-of-the-art methods by large margins, especially 6.35% in terms of R1@0.5 on Charades-STA.
Abstract:Existing video copy detection methods generally measure video similarity based on spatial similarities between key frames, neglecting the latent similarity in temporal dimension, so that the video similarity is biased towards spatial information. There are methods modeling unified video similarity in an end-to-end way, but losing detailed partial alignment information, which causes the incapability of copy segments localization. To address the above issues, we propose the Video Similarity and Alignment Learning (VSAL) approach, which jointly models spatial similarity, temporal similarity and partial alignment. To mitigate the spatial similarity bias, we model the temporal similarity as the mask map predicted from frame-level spatial similarity, where each element indicates the probability of frame pair lying right on the partial alignments. To further localize partial copies, the step map is learned from the spatial similarity where the elements indicate extending directions of the current partial alignments on the spatial-temporal similarity map. Obtained from the mask map, the start points extend out into partial optimal alignments following instructions of the step map. With the similarity and alignment learning strategy, VSAL achieves the state-of-the-art F1-score on VCDB core dataset. Furthermore, we construct a new benchmark of partial video copy detection and localization by adding new segment-level annotations for FIVR-200k dataset, where VSAL also achieves the best performance, verifying its effectiveness in more challenging situations. Our project is publicly available at https://pvcd-vsal.github.io/vsal/.
Abstract:Video-text retrieval is an important yet challenging task in vision-language understanding, which aims to learn a joint embedding space where related video and text instances are close to each other. Most current works simply measure the video-text similarity based on video-level and text-level embeddings. However, the neglect of more fine-grained or local information causes the problem of insufficient representation. Some works exploit the local details by disentangling sentences, but overlook the corresponding videos, causing the asymmetry of video-text representation. To address the above limitations, we propose a Hierarchical Alignment Network (HANet) to align different level representations for video-text matching. Specifically, we first decompose video and text into three semantic levels, namely event (video and text), action (motion and verb), and entity (appearance and noun). Based on these, we naturally construct hierarchical representations in the individual-local-global manner, where the individual level focuses on the alignment between frame and word, local level focuses on the alignment between video clip and textual context, and global level focuses on the alignment between the whole video and text. Different level alignments capture fine-to-coarse correlations between video and text, as well as take the advantage of the complementary information among three semantic levels. Besides, our HANet is also richly interpretable by explicitly learning key semantic concepts. Extensive experiments on two public datasets, namely MSR-VTT and VATEX, show the proposed HANet outperforms other state-of-the-art methods, which demonstrates the effectiveness of hierarchical representation and alignment. Our code is publicly available.
Abstract:Temporal action localization aims to localize starting and ending time with action category. Limited by GPU memory, mainstream methods pre-extract features for each video. Therefore, feature quality determines the upper bound of detection performance. In this technical report, we explored classic convolution-based backbones and the recent surge of transformer-based backbones. We found that the transformer-based methods can achieve better classification performance than convolution-based, but they cannot generate accuracy action proposals. In addition, extracting features with larger frame resolution to reduce the loss of spatial information can also effectively improve the performance of temporal action localization. Finally, we achieve 42.42% in terms of mAP on validation set with a single SlowFast feature by a simple combination: BMN+TCANet, which is 1.87% higher than the result of 2020's multi-model ensemble. Finally, we achieve Rank 1st on the CVPR2021 HACS supervised Temporal Action Localization Challenge.
Abstract:Weakly-Supervised Temporal Action Localization (WS-TAL) task aims to recognize and localize temporal starts and ends of action instances in an untrimmed video with only video-level label supervision. Due to lack of negative samples of background category, it is difficult for the network to separate foreground and background, resulting in poor detection performance. In this report, we present our 2021 HACS Challenge - Weakly-supervised Learning Track solution that based on BaSNet to address above problem. Specifically, we first adopt pre-trained CSN, Slowfast, TDN, and ViViT as feature extractors to get feature sequences. Then our proposed Local-Global Background Modeling Network (LGBM-Net) is trained to localize instances by using only video-level labels based on Multi-Instance Learning (MIL). Finally, we ensemble multiple models to get the final detection results and reach 22.45% mAP on the test set
Abstract:This technical report presents our solution for temporal action detection task in AcitivityNet Challenge 2021. The purpose of this task is to locate and identify actions of interest in long untrimmed videos. The crucial challenge of the task comes from that the temporal duration of action varies dramatically, and the target actions are typically embedded in a background of irrelevant activities. Our solution builds on BMN, and mainly contains three steps: 1) action classification and feature encoding by Slowfast, CSN and ViViT; 2) proposal generation. We improve BMN by embedding the proposed Proposal Relation Network (PRN), by which we can generate proposals of high quality; 3) action detection. We calculate the detection results by assigning the proposals with corresponding classification results. Finally, we ensemble the results under different settings and achieve 44.7% on the test set, which improves the champion result in ActivityNet 2020 by 1.9% in terms of average mAP.
Abstract:This paper presents our solution to the AVA-Kinetics Crossover Challenge of ActivityNet workshop at CVPR 2021. Our solution utilizes multiple types of relation modeling methods for spatio-temporal action detection and adopts a training strategy to integrate multiple relation modeling in end-to-end training over the two large-scale video datasets. Learning with memory bank and finetuning for long-tailed distribution are also investigated to further improve the performance. In this paper, we detail the implementations of our solution and provide experiments results and corresponding discussions. We finally achieve 40.67 mAP on the test set of AVA-Kinetics.
Abstract:This technical report analyzes an egocentric video action detection method we used in the 2021 EPIC-KITCHENS-100 competition hosted in CVPR2021 Workshop. The goal of our task is to locate the start time and the end time of the action in the long untrimmed video, and predict action category. We adopt sliding window strategy to generate proposals, which can better adapt to short-duration actions. In addition, we show that classification and proposals are conflict in the same network. The separation of the two tasks boost the detection performance with high efficiency. By simply employing these strategy, we achieved 16.10\% performance on the test set of EPIC-KITCHENS-100 Action Detection challenge using a single model, surpassing the baseline method by 11.7\% in terms of average mAP.
Abstract:With the recent surge in the research of vision transformers, they have demonstrated remarkable potential for various challenging computer vision applications, such as image recognition, point cloud classification as well as video understanding. In this paper, we present empirical results for training a stronger video vision transformer on the EPIC-KITCHENS-100 Action Recognition dataset. Specifically, we explore training techniques for video vision transformers, such as augmentations, resolutions as well as initialization, etc. With our training recipe, a single ViViT model achieves the performance of 47.4\% on the validation set of EPIC-KITCHENS-100 dataset, outperforming what is reported in the original paper by 3.4%. We found that video transformers are especially good at predicting the noun in the verb-noun action prediction task. This makes the overall action prediction accuracy of video transformers notably higher than convolutional ones. Surprisingly, even the best video transformers underperform the convolutional networks on the verb prediction. Therefore, we combine the video vision transformers and some of the convolutional video networks and present our solution to the EPIC-KITCHENS-100 Action Recognition competition.
Abstract:Content-based video retrieval aims to find videos from a large video database that are similar to or even near-duplicate of a given query video. Video representation and similarity search algorithms are crucial to any video retrieval system. To derive effective video representation, most video retrieval systems require a large amount of manually annotated data for training, making it costly inefficient. In addition, most retrieval systems are based on frame-level features for video similarity searching, making it expensive both storage wise and search wise. We propose a novel video retrieval system, termed SVRTN, that effectively addresses the above shortcomings. It first applies self-supervised training to effectively learn video representation from unlabeled data to avoid the expensive cost of manual annotation. Then, it exploits transformer structure to aggregate frame-level features into clip-level to reduce both storage space and search complexity. It can learn the complementary and discriminative information from the interactions among clip frames, as well as acquire the frame permutation and missing invariant ability to support more flexible retrieval manners. Comprehensive experiments on two challenging video retrieval datasets, namely FIVR-200K and SVD, verify the effectiveness of our proposed SVRTN method, which achieves the best performance of video retrieval on accuracy and efficiency.