Zhejiang University
Abstract:In this paper, we study a novel inference paradigm, termed as schema inference, that learns to deductively infer the explainable predictions by rebuilding the prior deep neural network (DNN) forwarding scheme, guided by the prevalent philosophical cognitive concept of schema. We strive to reformulate the conventional model inference pipeline into a graph matching policy that associates the extracted visual concepts of an image with the pre-computed scene impression, by analogy with human reasoning mechanism via impression matching. To this end, we devise an elaborated architecture, termed as SchemaNet, as a dedicated instantiation of the proposed schema inference concept, that models both the visual semantics of input instances and the learned abstract imaginations of target categories as topological relational graphs. Meanwhile, to capture and leverage the compositional contributions of visual semantics in a global view, we also introduce a universal Feat2Graph scheme in SchemaNet to establish the relational graphs that contain abundant interaction information. Both the theoretical analysis and the experimental results on several benchmarks demonstrate that the proposed schema inference achieves encouraging performance and meanwhile yields a clear picture of the deductive process leading to the predictions. Our code is available at https://github.com/zhfeing/SchemaNet-PyTorch.
Abstract:Recent proposed DETR variants have made tremendous progress in various scenarios due to their streamlined processes and remarkable performance. However, the learned queries usually explore the global context to generate the final set prediction, resulting in redundant burdens and unfaithful results. More specifically, a query is commonly responsible for objects of different scales and positions, which is a challenge for the query itself, and will cause spatial resource competition among queries. To alleviate this issue, we propose Team DETR, which leverages query collaboration and position constraints to embrace objects of interest more precisely. We also dynamically cater to each query member's prediction preference, offering the query better scale and spatial priors. In addition, the proposed Team DETR is flexible enough to be adapted to other existing DETR variants without increasing parameters and calculations. Extensive experiments on the COCO dataset show that Team DETR achieves remarkable gains, especially for small and large objects. Code is available at \url{https://github.com/horrible-dong/TeamDETR}.
Abstract:Despite the remarkable progress in semantic segmentation tasks with the advancement of deep neural networks, existing U-shaped hierarchical typical segmentation networks still suffer from local misclassification of categories and inaccurate target boundaries. In an effort to alleviate this issue, we propose a Model Doctor for semantic segmentation problems. The Model Doctor is designed to diagnose the aforementioned problems in existing pre-trained models and treat them without introducing additional data, with the goal of refining the parameters to achieve better performance. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our method. Code is available at \url{https://github.com/zhijiejia/SegDoctor}.
Abstract:Cross-view multi-object tracking aims to link objects between frames and camera views with substantial overlaps. Although cross-view multi-object tracking has received increased attention in recent years, existing datasets still have several issues, including 1) missing real-world scenarios, 2) lacking diverse scenes, 3) owning a limited number of tracks, 4) comprising only static cameras, and 5) lacking standard benchmarks, which hinder the investigation and comparison of cross-view tracking methods. To solve the aforementioned issues, we introduce DIVOTrack: a new cross-view multi-object tracking dataset for DIVerse Open scenes with dense tracking pedestrians in realistic and non-experimental environments. Our DIVOTrack has ten distinct scenarios and 550 cross-view tracks, surpassing all cross-view multi-object tracking datasets currently available. Furthermore, we provide a novel baseline cross-view tracking method with a unified joint detection and cross-view tracking framework named CrossMOT, which learns object detection, single-view association, and cross-view matching with an all-in-one embedding model. Finally, we present a summary of current methodologies and a set of standard benchmarks with our DIVOTrack to provide a fair comparison and conduct a comprehensive analysis of current approaches and our proposed CrossMOT. The dataset and code are available at https://github.com/shengyuhao/DIVOTrack.
Abstract:To deal with non-stationary online problems with complex constraints, we investigate the dynamic regret of online Frank-Wolfe (OFW), which is an efficient projection-free algorithm for online convex optimization. It is well-known that in the setting of offline optimization, the smoothness of functions and the strong convexity of functions accompanying specific properties of constraint sets can be utilized to achieve fast convergence rates for the Frank-Wolfe (FW) algorithm. However, for OFW, previous studies only establish a dynamic regret bound of $O(\sqrt{T}(1+V_T+\sqrt{D_T}))$ by utilizing the convexity of problems, where $T$ is the number of rounds, $V_T$ is the function variation, and $D_T$ is the gradient variation. In this paper, we derive improved dynamic regret bounds for OFW by extending the fast convergence rates of FW from offline optimization to online optimization. The key technique for this extension is to set the step size of OFW with a line search rule. In this way, we first show that the dynamic regret bound of OFW can be improved to $O(\sqrt{T(1+V_T)})$ for smooth functions. Second, we achieve a better dynamic regret bound of $O((1+V_T)^{2/3}T^{1/3})$ when functions are smooth and strongly convex, and the constraint set is strongly convex. Finally, for smooth and strongly convex functions with minimizers in the interior of the constraint set, we demonstrate that the dynamic regret of OFW reduces to $O(1+V_T)$, and can be further strengthened to $O(\min\{P_T^\ast,S_T^\ast,V_T\}+1)$ by performing a constant number of FW iterations per round, where $P_T^\ast$ and $S_T^\ast$ denote the path length and squared path length of minimizers, respectively.
Abstract:Structural pruning enables model acceleration by removing structurally-grouped parameters from neural networks. However, the parameter-grouping patterns vary widely across different models, making architecture-specific pruners, which rely on manually-designed grouping schemes, non-generalizable to new architectures. In this work, we study a highly-challenging yet barely-explored task, any structural pruning, to tackle general structural pruning of arbitrary architecture like CNNs, RNNs, GNNs and Transformers. The most prominent obstacle towards this ambitious goal lies in the structural coupling, which not only forces different layers to be pruned simultaneously, but also expects all parameters in a removed group to be consistently unimportant, thereby avoiding significant performance degradation after pruning. To address this problem, we propose a general and fully automatic method, Dependency Graph (DepGraph), to explicitly model the inter-dependency between layers and comprehensively group coupled parameters. In this work, we extensively evaluate our method on several architectures and tasks, including ResNe(X)t, DenseNet, MobileNet and Vision transformer for images, GAT for graph, DGCNN for 3D point cloud, alongside LSTM for language, and demonstrate that, even with a simple L1 norm criterion, the proposed method consistently yields gratifying performances.
Abstract:Retrosynthesis is the cornerstone of organic chemistry, providing chemists in material and drug manufacturing access to poorly available and brand-new molecules. Conventional rule-based or expert-based computer-aided synthesis has obvious limitations, such as high labor costs and limited search space. In recent years, dramatic breakthroughs driven by artificial intelligence have revolutionized retrosynthesis. Here we aim to present a comprehensive review of recent advances in AI-based retrosynthesis. For single-step and multi-step retrosynthesis both, we first list their goal and provide a thorough taxonomy of existing methods. Afterwards, we analyze these methods in terms of their mechanism and performance, and introduce popular evaluation metrics for them, in which we also provide a detailed comparison among representative methods on several public datasets. In the next part we introduce popular databases and established platforms for retrosynthesis. Finally, this review concludes with a discussion about promising research directions in this field.
Abstract:ProtoPNet and its follow-up variants (ProtoPNets) have attracted broad research interest for their intrinsic interpretability from prototypes and comparable accuracy to non-interpretable counterparts. However, it has been recently found that the interpretability of prototypes can be corrupted due to the semantic gap between similarity in latent space and that in input space. In this work, we make the first attempt to quantitatively evaluate the interpretability of prototype-based explanations, rather than solely qualitative evaluations by some visualization examples, which can be easily misled by cherry picks. To this end, we propose two evaluation metrics, termed consistency score and stability score, to evaluate the explanation consistency cross images and the explanation robustness against perturbations, both of which are essential for explanations taken into practice. Furthermore, we propose a shallow-deep feature alignment (SDFA) module and a score aggregation (SA) module to improve the interpretability of prototypes. We conduct systematical evaluation experiments and substantial discussions to uncover the interpretability of existing ProtoPNets. Experiments demonstrate that our method achieves significantly superior performance to the state-of-the-arts, under both the conventional qualitative evaluations and the proposed quantitative evaluations, in both accuracy and interpretability. Codes are available at https://github.com/hqhQAQ/EvalProtoPNet.
Abstract:Semantic segmentation based on sparse annotation has advanced in recent years. It labels only part of each object in the image, leaving the remainder unlabeled. Most of the existing approaches are time-consuming and often necessitate a multi-stage training strategy. In this work, we propose a simple yet effective sparse annotated semantic segmentation framework based on segformer, dubbed SASFormer, that achieves remarkable performance. Specifically, the framework first generates hierarchical patch attention maps, which are then multiplied by the network predictions to produce correlated regions separated by valid labels. Besides, we also introduce the affinity loss to ensure consistency between the features of correlation results and network predictions. Extensive experiments showcase that our proposed approach is superior to existing methods and achieves cutting-edge performance. The source code is available at \url{https://github.com/su-hui-zz/SASFormer}.
Abstract:Pseudo supervision is regarded as the core idea in semi-supervised learning for semantic segmentation, and there is always a tradeoff between utilizing only the high-quality pseudo labels and leveraging all the pseudo labels. Addressing that, we propose a novel learning approach, called Conservative-Progressive Collaborative Learning (CPCL), among which two predictive networks are trained in parallel, and the pseudo supervision is implemented based on both the agreement and disagreement of the two predictions. One network seeks common ground via intersection supervision and is supervised by the high-quality labels to ensure a more reliable supervision, while the other network reserves differences via union supervision and is supervised by all the pseudo labels to keep exploring with curiosity. Thus, the collaboration of conservative evolution and progressive exploration can be achieved. To reduce the influences of the suspicious pseudo labels, the loss is dynamic re-weighted according to the prediction confidence. Extensive experiments demonstrate that CPCL achieves state-of-the-art performance for semi-supervised semantic segmentation.