Abstract:Partial label learning (PLL) seeks to train generalizable classifiers from datasets with inexact supervision, a common challenge in real-world applications. Existing studies have developed numerous approaches to progressively refine and recover ground-truth labels by training convolutional neural networks. However, limited attention has been given to foundation models that offer transferrable representations. In this work, we empirically conduct comprehensive evaluations of 11 foundation models across 13 PLL approaches on 8 benchmark datasets under 3 PLL scenarios. We further propose PartialCLIP, an efficient fine-tuning framework for foundation models in PLL. Our findings reveal that current PLL approaches tend to 1) achieve significant performance gains when using foundation models, 2) exhibit remarkably similar performance to each other, 3) maintain stable performance across varying ambiguity levels, while 4) are susceptible to foundation model selection and adaptation strategies. Additionally, we demonstrate the efficacy of text-embedding classifier initialization and effective candidate label filtering using zero-shot CLIP. Our experimental results and analysis underscore the limitations of current PLL approaches and provide valuable insights for developing more generalizable PLL models. The source code can be found at https://github.com/SEU-hk/PartialCLIP.
Abstract:Continual learning with vision-language models like CLIP offers a pathway toward scalable machine learning systems by leveraging its transferable representations. Existing CLIP-based methods adapt the pre-trained image encoder by adding multiple sets of learnable parameters, with each task using a partial set of parameters. This requires selecting the expected parameters for input images during inference, which is prone to error that degrades performance. To address this problem, we introduce LADA (Label-specific ADApter). Instead of partitioning parameters across tasks, LADA appends lightweight, label-specific memory units to the frozen CLIP image encoder, enabling discriminative feature generation by aggregating task-agnostic knowledge. To prevent catastrophic forgetting, LADA employs feature distillation for seen classes, preventing their features from being interfered with by new classes. Positioned after the image encoder, LADA prevents gradient flow to the frozen CLIP parameters, ensuring efficient training. Extensive results show that LADA achieves state-of-the-art performance in continual learning settings. The implementation code is available at https://github.com/MaolinLuo/LADA.
Abstract:In survival analysis, subjects often face competing risks; for example, individuals with cancer may also suffer from heart disease or other illnesses, which can jointly influence the prognosis of risks and censoring. Traditional survival analysis methods often treat competing risks as independent and fail to accommodate the dependencies between different conditions. In this paper, we introduce HACSurv, a survival analysis method that learns Hierarchical Archimedean Copulas structures and cause-specific survival functions from data with competing risks. HACSurv employs a flexible dependency structure using hierarchical Archimedean copulas to represent the relationships between competing risks and censoring. By capturing the dependencies between risks and censoring, HACSurv achieves better survival predictions and offers insights into risk interactions. Experiments on synthetic datasets demonstrate that our method can accurately identify the complex dependency structure and precisely predict survival distributions, whereas the compared methods exhibit significant deviations between their predictions and the true distributions. Experiments on multiple real-world datasets also demonstrate that our method achieves better survival prediction compared to previous state-of-the-art methods.
Abstract:Long-tailed semi-supervised learning poses a significant challenge in training models with limited labeled data exhibiting a long-tailed label distribution. Current state-of-the-art LTSSL approaches heavily rely on high-quality pseudo-labels for large-scale unlabeled data. However, these methods often neglect the impact of representations learned by the neural network and struggle with real-world unlabeled data, which typically follows a different distribution than labeled data. This paper introduces a novel probabilistic framework that unifies various recent proposals in long-tail learning. Our framework derives the class-balanced contrastive loss through Gaussian kernel density estimation. We introduce a continuous contrastive learning method, CCL, extending our framework to unlabeled data using reliable and smoothed pseudo-labels. By progressively estimating the underlying label distribution and optimizing its alignment with model predictions, we tackle the diverse distribution of unlabeled data in real-world scenarios. Extensive experiments across multiple datasets with varying unlabeled data distributions demonstrate that CCL consistently outperforms prior state-of-the-art methods, achieving over 4% improvement on the ImageNet-127 dataset. Our source code is available at https://github.com/zhouzihao11/CCL
Abstract:Recent research on fine-tuning vision-language models has demonstrated impressive performance in various downstream tasks. However, the challenge of obtaining accurately labeled data in real-world applications poses a significant obstacle during the fine-tuning process. To address this challenge, this paper presents a Denoising Fine-Tuning framework, called DeFT, for adapting vision-language models. DeFT utilizes the robust alignment of textual and visual features pre-trained on millions of auxiliary image-text pairs to sieve out noisy labels. The proposed framework establishes a noisy label detector by learning positive and negative textual prompts for each class. The positive prompt seeks to reveal distinctive features of the class, while the negative prompt serves as a learnable threshold for separating clean and noisy samples. We employ parameter-efficient fine-tuning for the adaptation of a pre-trained visual encoder to promote its alignment with the learned textual prompts. As a general framework, DeFT can seamlessly fine-tune many pre-trained models to downstream tasks by utilizing carefully selected clean samples. Experimental results on seven synthetic and real-world noisy datasets validate the effectiveness of DeFT in both noisy label detection and image classification.
Abstract:Multi-instance partial-label learning (MIPL) addresses scenarios where each training sample is represented as a multi-instance bag associated with a candidate label set containing one true label and several false positives. Existing MIPL algorithms have primarily focused on mapping multi-instance bags to candidate label sets for disambiguation, disregarding the intrinsic properties of the label space and the supervised information provided by non-candidate label sets. In this paper, we propose an algorithm named ELIMIPL, i.e., Exploiting conjugate Label Information for Multi-Instance Partial-Label learning, which exploits the conjugate label information to improve the disambiguation performance. To achieve this, we extract the label information embedded in both candidate and non-candidate label sets, incorporating the intrinsic properties of the label space. Experimental results obtained from benchmark and real-world datasets demonstrate the superiority of the proposed ELIMIPL over existing MIPL algorithms and other well-established partial-label learning algorithms.
Abstract:Although attention-based multi-instance learning algorithms have achieved impressive performances on slide-level whole slide image (WSI) classification tasks, they are prone to mistakenly focus on irrelevant patterns such as staining conditions and tissue morphology, leading to incorrect patch-level predictions and unreliable interpretability. Moreover, these attention-based MIL algorithms tend to focus on salient instances and struggle to recognize hard-to-classify instances. In this paper, we first demonstrate that attention-based WSI classification methods do not adhere to the standard MIL assumptions. From the standard MIL assumptions, we propose a surprisingly simple yet effective instance-based MIL method for WSI classification (FocusMIL) based on max-pooling and forward amortized variational inference. We argue that synergizing the standard MIL assumption with variational inference encourages the model to focus on tumour morphology instead of spurious correlations. Our experimental evaluations show that FocusMIL significantly outperforms the baselines in patch-level classification tasks on the Camelyon16 and TCGA-NSCLC benchmarks. Visualization results show that our method also achieves better classification boundaries for identifying hard instances and mitigates the effect of spurious correlations between bags and labels.
Abstract:While long-tailed semi-supervised learning (LTSSL) has received tremendous attention in many real-world classification problems, existing LTSSL algorithms typically assume that the class distributions of labeled and unlabeled data are almost identical. Those LTSSL algorithms built upon the assumption can severely suffer when the class distributions of labeled and unlabeled data are mismatched since they utilize biased pseudo-labels from the model. To alleviate this problem, we propose a new simple method that can effectively utilize unlabeled data from unknown class distributions through Boosting cOnsistency in duAl Training (BOAT). Specifically, we construct the standard and balanced branch to ensure the performance of the head and tail classes, respectively. Throughout the training process, the two branches incrementally converge and interact with each other, eventually resulting in commendable performance across all classes. Despite its simplicity, we show that BOAT achieves state-of-the-art performance on a variety of standard LTSSL benchmarks, e.g., an averaged 2.7% absolute increase in test accuracy against existing algorithms when the class distributions of labeled and unlabeled data are mismatched. Even when the class distributions are identical, BOAT consistently outperforms many sophisticated LTSSL algorithms. We carry out extensive ablation studies to tease apart the factors that are the most important to the success of BOAT. The source code is available at https://github.com/Gank0078/BOAT.
Abstract:Despite recent advancements in out-of-distribution (OOD) detection, most current studies assume a class-balanced in-distribution training dataset, which is rarely the case in real-world scenarios. This paper addresses the challenging task of long-tailed OOD detection, where the in-distribution data follows a long-tailed class distribution. The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes, as the ability of a classifier to detect OOD instances is not strongly correlated with its accuracy on the in-distribution classes. To overcome this issue, we propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes. This approach allows us to build a detector with clear decision boundaries by training on OOD data using virtual labels. (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data. This technique encourages the model to pay more attention to the discriminative features of the tail classes. We provide a clue for separating in-distribution and OOD data by analyzing gradient noise. Through extensive experiments, we demonstrate that our method outperforms the current state-of-the-art on various benchmark datasets. Moreover, our method can be used as an add-on for existing long-tail learning approaches, significantly enhancing their OOD detection performance. Code is available at: https://github.com/Stomach-ache/Long-Tailed-OOD-Detection .
Abstract:Recently, learning with soft labels has been shown to achieve better performance than learning with hard labels in terms of model generalization, calibration, and robustness. However, collecting pointwise labeling confidence for all training examples can be challenging and time-consuming in real-world scenarios. This paper delves into a novel weakly supervised binary classification problem called confidence-difference (ConfDiff) classification. Instead of pointwise labeling confidence, we are given only unlabeled data pairs with confidence difference that specifies the difference in the probabilities of being positive. We propose a risk-consistent approach to tackle this problem and show that the estimation error bound achieves the optimal convergence rate. We also introduce a risk correction approach to mitigate overfitting problems, whose consistency and convergence rate are also proven. Extensive experiments on benchmark data sets and a real-world recommender system data set validate the effectiveness of our proposed approaches in exploiting the supervision information of the confidence difference.