Abstract:Meritocratic systems, from admissions to hiring, aim to impartially reward skill and effort. Yet persistent disparities across race, gender, and class challenge this ideal. Some attribute these gaps to structural inequality; others to individual choice. We develop a game-theoretic model in which candidates from different socioeconomic groups differ in their perceived post-selection value--shaped by social context and, increasingly, by AI-powered tools offering personalized career or salary guidance. Each candidate strategically chooses effort, balancing its cost against expected reward; effort translates into observable merit, and selection is based solely on merit. We characterize the unique Nash equilibrium in the large-agent limit and derive explicit formulas showing how valuation disparities and institutional selectivity jointly determine effort, representation, social welfare, and utility. We further propose a cost-sensitive optimization framework that quantifies how modifying selectivity or perceived value can reduce disparities without compromising institutional goals. Our analysis reveals a perception-driven bias: when perceptions of post-selection value differ across groups, these differences translate into rational differences in effort, propagating disparities backward through otherwise "fair" selection processes. While the model is static, it captures one stage of a broader feedback cycle linking perceptions, incentives, and outcome--bridging rational-choice and structural explanations of inequality by showing how techno-social environments shape individual incentives in meritocratic systems.
Abstract:Agricultural landscapes are quite complex, especially in the Global South where fields are smaller, and agricultural practices are more varied. In this paper we report on our progress in digitizing the agricultural landscape (natural and man-made) in our study region of India. We use high resolution imagery and a UNet style segmentation model to generate the first of its kind national-scale multi-class panoptic segmentation output. Through this work we have been able to identify individual fields across 151.7M hectares, and delineating key features such as water resources and vegetation. We share how this output was validated by our team and externally by downstream users, including some sample use cases that can lead to targeted data driven decision making. We believe this dataset will contribute towards digitizing agriculture by generating the foundational baselayer.