Abstract:Agricultural products are often subject to seasonal fluctuations in production and demand. Predicting and managing inventory levels in response to these variations can be challenging, leading to either excess inventory or stockouts. Additionally, the coordination among stakeholders at various level of food supply chain is not considered in the existing body of literature. To bridge these research gaps, this study focuses on inventory management of agri-food products under demand and lead time uncertainties. By implementing effective inventory replenishment policy results in maximize the overall profit throughout the supply chain. However, the complexity of the problem increases due to these uncertainties and shelf-life of the product, that makes challenging to implement traditional approaches to generate optimal set of solutions. Thus, the current study propose a novel Deep Reinforcement Learning (DRL) algorithm that combines the benefits of both value- and policy-based DRL approaches for inventory optimization under uncertainties. The proposed algorithm can incentivize collaboration among stakeholders by aligning their interests and objectives through shared optimization goal of maximizing profitability along the agri-food supply chain while considering perishability, and uncertainty simultaneously. By selecting optimal order quantities with continuous action space, the proposed algorithm effectively addresses the inventory optimization challenges. To rigorously evaluate this algorithm, the empirical data from fresh agricultural products supply chain inventory is considered. Experimental results corroborate the improved performance of the proposed inventory replenishment policy under stochastic demand patterns and lead time scenarios. The research findings hold managerial implications for policymakers to manage the inventory of agricultural products more effectively under uncertainty.
Abstract:Social media constitutes a rich and influential source of information for qualitative researchers. Although computational techniques like topic modelling assist with managing the volume and diversity of social media content, qualitative researcher's lack of programming expertise creates a significant barrier to their adoption. In this paper we explore how BERTopic, an advanced Large Language Model (LLM)-based topic modelling technique, can support qualitative data analysis of social media. We conducted interviews and hands-on evaluations in which qualitative researchers compared topics from three modelling techniques: LDA, NMF, and BERTopic. BERTopic was favoured by 8 of 12 participants for its ability to provide detailed, coherent clusters for deeper understanding and actionable insights. Participants also prioritised topic relevance, logical organisation, and the capacity to reveal unexpected relationships within the data. Our findings underscore the potential of LLM-based techniques for supporting qualitative analysis.
Abstract:Agricultural landscapes are quite complex, especially in the Global South where fields are smaller, and agricultural practices are more varied. In this paper we report on our progress in digitizing the agricultural landscape (natural and man-made) in our study region of India. We use high resolution imagery and a UNet style segmentation model to generate the first of its kind national-scale multi-class panoptic segmentation output. Through this work we have been able to identify individual fields across 151.7M hectares, and delineating key features such as water resources and vegetation. We share how this output was validated by our team and externally by downstream users, including some sample use cases that can lead to targeted data driven decision making. We believe this dataset will contribute towards digitizing agriculture by generating the foundational baselayer.