Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Adversarial Vulnerability Bounds for Gaussian Process Classification


Sep 19, 2019
Michael Thomas Smith, Kathrin Grosse, Michael Backes, Mauricio A Alvarez

* 10 pages + 2 pages references + 7 pages of supplementary. 12 figures. Submitted to AAAI 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Updates-Leak: Data Set Inference and Reconstruction Attacks in Online Learning


Apr 01, 2019
Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz, Yang Zhang


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Adversarial Initialization -- when your network performs the way I want


Feb 08, 2019
Kathrin Grosse, Thomas A. Trost, Marius Mosbach, Michael Backes, Dietrich Klakow

* 16 pages, 20 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

The Limitations of Model Uncertainty in Adversarial Settings


Dec 06, 2018
Kathrin Grosse, David Pfaff, Michael T. Smith, Michael Backes

* 14 pages, 9 figures, 2 tables 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

MLCapsule: Guarded Offline Deployment of Machine Learning as a Service


Aug 01, 2018
Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Max Augustin, Michael Backes, Mario Fritz


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Killing Three Birds with one Gaussian Process: Analyzing Attack Vectors on Classification


Jun 06, 2018
Kathrin Grosse, Michael T. Smith, Michael Backes

* 15 pages, 5 tables, 12 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models


Jun 04, 2018
Ahmed Salem, Yang Zhang, Mathias Humbert, Mario Fritz, Michael Backes


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

How Wrong Am I? - Studying Adversarial Examples and their Impact on Uncertainty in Gaussian Process Machine Learning Models


Feb 16, 2018
Kathrin Grosse, David Pfaff, Michael Thomas Smith, Michael Backes

* 8 pages, 7 pages appendix, 8 figures and 13 tables; improved writing and figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

On the (Statistical) Detection of Adversarial Examples


Oct 17, 2017
Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, Patrick McDaniel

* 13 pages, 4 figures, 5 tables. New version: improved writing, incorporating external feedback 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Simulated Penetration Testing and Mitigation Analysis


May 15, 2017
Michael Backes, Jörg Hoffmann, Robert Künnemann, Patrick Speicher, Marcel Steinmetz


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
<<
1
2
3
4
5
>>