Alert button
Picture for Mark Palatucci

Mark Palatucci

Alert button

Hierarchical Model-Based Imitation Learning for Planning in Autonomous Driving

Oct 18, 2022
Eli Bronstein, Mark Palatucci, Dominik Notz, Brandyn White, Alex Kuefler, Yiren Lu, Supratik Paul, Payam Nikdel, Paul Mougin, Hongge Chen, Justin Fu, Austin Abrams, Punit Shah, Evan Racah, Benjamin Frenkel, Shimon Whiteson, Dragomir Anguelov

Figure 1 for Hierarchical Model-Based Imitation Learning for Planning in Autonomous Driving
Figure 2 for Hierarchical Model-Based Imitation Learning for Planning in Autonomous Driving
Figure 3 for Hierarchical Model-Based Imitation Learning for Planning in Autonomous Driving
Figure 4 for Hierarchical Model-Based Imitation Learning for Planning in Autonomous Driving

We demonstrate the first large-scale application of model-based generative adversarial imitation learning (MGAIL) to the task of dense urban self-driving. We augment standard MGAIL using a hierarchical model to enable generalization to arbitrary goal routes, and measure performance using a closed-loop evaluation framework with simulated interactive agents. We train policies from expert trajectories collected from real vehicles driving over 100,000 miles in San Francisco, and demonstrate a steerable policy that can navigate robustly even in a zero-shot setting, generalizing to synthetic scenarios with novel goals that never occurred in real-world driving. We also demonstrate the importance of mixing closed-loop MGAIL losses with open-loop behavior cloning losses, and show our best policy approaches the performance of the expert. We evaluate our imitative model in both average and challenging scenarios, and show how it can serve as a useful prior to plan successful trajectories.

* IROS 2022 
Viaarxiv icon

Symphony: Learning Realistic and Diverse Agents for Autonomous Driving Simulation

May 06, 2022
Maximilian Igl, Daewoo Kim, Alex Kuefler, Paul Mougin, Punit Shah, Kyriacos Shiarlis, Dragomir Anguelov, Mark Palatucci, Brandyn White, Shimon Whiteson

Figure 1 for Symphony: Learning Realistic and Diverse Agents for Autonomous Driving Simulation
Figure 2 for Symphony: Learning Realistic and Diverse Agents for Autonomous Driving Simulation
Figure 3 for Symphony: Learning Realistic and Diverse Agents for Autonomous Driving Simulation
Figure 4 for Symphony: Learning Realistic and Diverse Agents for Autonomous Driving Simulation

Simulation is a crucial tool for accelerating the development of autonomous vehicles. Making simulation realistic requires models of the human road users who interact with such cars. Such models can be obtained by applying learning from demonstration (LfD) to trajectories observed by cars already on the road. However, existing LfD methods are typically insufficient, yielding policies that frequently collide or drive off the road. To address this problem, we propose Symphony, which greatly improves realism by combining conventional policies with a parallel beam search. The beam search refines these policies on the fly by pruning branches that are unfavourably evaluated by a discriminator. However, it can also harm diversity, i.e., how well the agents cover the entire distribution of realistic behaviour, as pruning can encourage mode collapse. Symphony addresses this issue with a hierarchical approach, factoring agent behaviour into goal generation and goal conditioning. The use of such goals ensures that agent diversity neither disappears during adversarial training nor is pruned away by the beam search. Experiments on both proprietary and open Waymo datasets confirm that Symphony agents learn more realistic and diverse behaviour than several baselines.

* Accepted to ICRA-2022 
Viaarxiv icon