Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

A Survey on Uncertainty Toolkits for Deep Learning


May 02, 2022
Maximilian Pintz, Joachim Sicking, Maximilian Poretschkin, Maram Akila

Add code

* Accepted at the ICLR 2022 workshop "Setting up ML Evaluation Standards to Accelerate Progress" 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Tailored Uncertainty Estimation for Deep Learning Systems


Apr 29, 2022
Joachim Sicking, Maram Akila, Jan David Schneider, Fabian Hüger, Peter Schlicht, Tim Wirtz, Stefan Wrobel

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Validation of Simulation-Based Testing: Bypassing Domain Shift with Label-to-Image Synthesis


Jun 10, 2021
Julia Rosenzweig, Eduardo Brito, Hans-Ulrich Kobialka, Maram Akila, Nico M. Schmidt, Peter Schlicht, Jan David Schneider, Fabian Hüger, Matthias Rottmann, Sebastian Houben, Tim Wirtz

Add code

* The first two authors contributed equally. Accepted at the 4th Workshop on "Ensuring and Validating Safety for Automated Vehicles" (WS13), IV2021. Under IEEE Copyright 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety


Apr 29, 2021
Sebastian Houben, Stephanie Abrecht, Maram Akila, Andreas Bär, Felix Brockherde, Patrick Feifel, Tim Fingscheidt, Sujan Sai Gannamaneni, Seyed Eghbal Ghobadi, Ahmed Hammam, Anselm Haselhoff, Felix Hauser, Christian Heinzemann, Marco Hoffmann, Nikhil Kapoor, Falk Kappel, Marvin Klingner, Jan Kronenberger, Fabian Küppers, Jonas Löhdefink, Michael Mlynarski, Michael Mock, Firas Mualla, Svetlana Pavlitskaya, Maximilian Poretschkin, Alexander Pohl, Varun Ravi-Kumar, Julia Rosenzweig, Matthias Rottmann, Stefan Rüping, Timo Sämann, Jan David Schneider, Elena Schulz, Gesina Schwalbe, Joachim Sicking, Toshika Srivastava, Serin Varghese, Michael Weber, Sebastian Wirkert, Tim Wirtz, Matthias Woehrle

Add code

* 94 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Patch Shortcuts: Interpretable Proxy Models Efficiently Find Black-Box Vulnerabilities


Apr 22, 2021
Julia Rosenzweig, Joachim Sicking, Sebastian Houben, Michael Mock, Maram Akila

Add code

* Under IEEE Copyright; accepted at the SAIAD (Safe Artificial Intelligence for Automated Driving) Workshop at CVPR 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Plants Don't Walk on the Street: Common-Sense Reasoning for Reliable Semantic Segmentation


Apr 19, 2021
Linara Adilova, Elena Schulz, Maram Akila, Sebastian Houben, Jan David Schneider, Fabian Hueger, Tim Wirtz

Add code

* Published at SAIAD (Safe Artificial Intelligence for Automated Driving) workshop at CVPR2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A Novel Regression Loss for Non-Parametric Uncertainty Optimization


Jan 07, 2021
Joachim Sicking, Maram Akila, Maximilian Pintz, Tim Wirtz, Asja Fischer, Stefan Wrobel

Add code

* Accepted at the 3rd Symposium on Advances in Approximate Bayesian Inference (AABI), code is available on: https://github.com/fraunhofer-iais/second-moment-loss. arXiv admin note: substantial text overlap with arXiv:2012.12687 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Second-Moment Loss: A Novel Regression Objective for Improved Uncertainties


Dec 23, 2020
Joachim Sicking, Maram Akila, Maximilian Pintz, Tim Wirtz, Asja Fischer, Stefan Wrobel

Add code

* Code is available on: https://github.com/fraunhofer-iais/second-moment-loss 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

DenseHMM: Learning Hidden Markov Models by Learning Dense Representations


Dec 17, 2020
Joachim Sicking, Maximilian Pintz, Maram Akila, Tim Wirtz

Add code

* Accepted at LMRL workshop at NeurIPS 2020. Code is available on: https://github.com/fraunhofer-iais/dense-hmm 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Characteristics of Monte Carlo Dropout in Wide Neural Networks


Jul 10, 2020
Joachim Sicking, Maram Akila, Tim Wirtz, Sebastian Houben, Asja Fischer

Add code

* Accepted at the ICML 2020 workshop for Uncertainty and Robustness in Deep Learning 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email