Abstract:Large language models (LLMs) can be dishonest when reporting on their actions and beliefs -- for example, they may overstate their confidence in factual claims or cover up evidence of covert actions. Such dishonesty may arise due to the effects of reinforcement learning (RL), where challenges with reward shaping can result in a training process that inadvertently incentivizes the model to lie or misrepresent its actions. In this work we propose a method for eliciting an honest expression of an LLM's shortcomings via a self-reported *confession*. A confession is an output, provided upon request after a model's original answer, that is meant to serve as a full account of the model's compliance with the letter and spirit of its policies and instructions. The reward assigned to a confession during training is solely based on its honesty, and does not impact positively or negatively the main answer's reward. As long as the "path of least resistance" for maximizing confession reward is to surface misbehavior rather than covering it up, this incentivizes models to be honest in their confessions. Our findings provide some justification this empirical assumption, especially in the case of egregious model misbehavior. To demonstrate the viability of our approach, we train GPT-5-Thinking to produce confessions, and we evaluate its honesty in out-of-distribution scenarios measuring hallucination, instruction following, scheming, and reward hacking. We find that when the model lies or omits shortcomings in its "main" answer, it often confesses to these behaviors honestly, and this confession honesty modestly improves with training. Confessions can enable a number of inference-time interventions including monitoring, rejection sampling, and surfacing issues to the user.




Abstract:The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.
Abstract:As large-scale language models increasingly impact safety-critical domains, ensuring their reliable adherence to well-defined principles remains a fundamental challenge. We introduce Deliberative Alignment, a new paradigm that directly teaches the model safety specifications and trains it to explicitly recall and accurately reason over the specifications before answering. We used this approach to align OpenAI's o-series models, and achieved highly precise adherence to OpenAI's safety policies, without requiring human-written chain-of-thoughts or answers. Deliberative Alignment pushes the Pareto frontier by simultaneously increasing robustness to jailbreaks while decreasing overrefusal rates, and also improves out-of-distribution generalization. We demonstrate that reasoning over explicitly specified policies enables more scalable, trustworthy, and interpretable alignment.




Abstract:Widely used alignment techniques, such as reinforcement learning from human feedback (RLHF), rely on the ability of humans to supervise model behavior - for example, to evaluate whether a model faithfully followed instructions or generated safe outputs. However, future superhuman models will behave in complex ways too difficult for humans to reliably evaluate; humans will only be able to weakly supervise superhuman models. We study an analogy to this problem: can weak model supervision elicit the full capabilities of a much stronger model? We test this using a range of pretrained language models in the GPT-4 family on natural language processing (NLP), chess, and reward modeling tasks. We find that when we naively finetune strong pretrained models on labels generated by a weak model, they consistently perform better than their weak supervisors, a phenomenon we call weak-to-strong generalization. However, we are still far from recovering the full capabilities of strong models with naive finetuning alone, suggesting that techniques like RLHF may scale poorly to superhuman models without further work. We find that simple methods can often significantly improve weak-to-strong generalization: for example, when finetuning GPT-4 with a GPT-2-level supervisor and an auxiliary confidence loss, we can recover close to GPT-3.5-level performance on NLP tasks. Our results suggest that it is feasible to make empirical progress today on a fundamental challenge of aligning superhuman models.