Abstract:Understanding videos inherently requires reasoning over both visual and auditory information. To properly evaluate Omni-Large Language Models (Omni-LLMs), which are capable of processing multi-modal information including vision and audio, an effective benchmark must comprehensively cover three key aspects: (1) multi-modal dependency (i.e., questions that cannot be answered using vision or audio alone), (2) diverse audio information types (e.g., speech, sound events), and (3) varying scene spans. However, existing datasets fall short in one or more of these dimensions, limiting strict and comprehensive evaluation. To address this gap, we introduce JointAVBench, a novel benchmark with strict audio-video correlation, spanning five cognitive dimensions, four audio information types (speech, sound events, music, vocal traits), and three scene spans (single-, cross-, and full-scene). Given the high cost of manual annotation, we propose an automated pipeline that leverages state-of-the-art vision-LLMs, audio-LLMs, and general-purpose LLMs to synthesize questions and answers that strictly require joint audio-visual understanding. We evaluate leading vision-only, audio-only, and Omni-LLMs on our dataset. Results show that even the best-performing Omni-LLM achieves an average accuracy of only 62.6\%, outperforming uni-modal baselines but revealing substantial room for improvement, especially in cross-scene reasoning.
Abstract:Time awareness is a fundamental ability of omni large language models, especially for understanding long videos and answering complex questions. Previous approaches mainly target vision-language scenarios and focus on the explicit temporal grounding questions, such as identifying when a visual event occurs or determining what event happens at aspecific time. However, they often make insufficient use of the audio modality, and overlook implicit temporal grounding across modalities--for example, identifying what is visually present when a character speaks, or determining what is said when a visual event occurs--despite such cross-modal temporal relations being prevalent in real-world scenarios. In this paper, we propose ChronusOmni, an omni large language model designed to enhance temporal awareness for both explicit and implicit audiovisual temporal grounding. First, we interleave text-based timestamp tokens with visual and audio representations at each time unit, enabling unified temporal modeling across modalities. Second, to enforce correct temporal ordering and strengthen fine-grained temporal reasoning, we incorporate reinforcement learning with specially designed reward functions. Moreover, we construct ChronusAV, a temporally-accurate, modality-complete, and cross-modal-aligned dataset to support the training and evaluation on audiovisual temporal grounding task. Experimental results demonstrate that ChronusOmni achieves state-of-the-art performance on ChronusAV with more than 30% improvement and top results on most metrics upon other temporal grounding benchmarks. This highlights the strong temporal awareness of our model across modalities, while preserving general video and audio understanding capabilities.
Abstract:Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.