Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Removable and/or Repeated Units Emerge in Overparametrized Deep Neural Networks

Dec 21, 2019
Stephen Casper, Xavier Boix, Vanessa D'Amario, Ling Guo, Martin Schrimpf, Kasper Vinken, Gabriel Kreiman


  Access Paper or Ask Questions

Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks

May 03, 2019
Dongkun Zhang, Ling Guo, George Em Karniadakis


  Access Paper or Ask Questions

I4U Submission to NIST SRE 2018: Leveraging from a Decade of Shared Experiences

Apr 16, 2019
Kong Aik Lee, Ville Hautamaki, Tomi Kinnunen, Hitoshi Yamamoto, Koji Okabe, Ville Vestman, Jing Huang, Guohong Ding, Hanwu Sun, Anthony Larcher, Rohan Kumar Das, Haizhou Li, Mickael Rouvier, Pierre-Michel Bousquet, Wei Rao, Qing Wang, Chunlei Zhang, Fahimeh Bahmaninezhad, Hector Delgado, Jose Patino, Qiongqiong Wang, Ling Guo, Takafumi Koshinaka, Jiacen Zhang, Koichi Shinoda, Trung Ngo Trong, Md Sahidullah, Fan Lu, Yun Tang, Ming Tu, Kah Kuan Teh, Huy Dat Tran, Kuruvachan K. George, Ivan Kukanov, Florent Desnous, Jichen Yang, Emre Yilmaz, Longting Xu, Jean-Francois Bonastre, Chenglin Xu, Zhi Hao Lim, Eng Siong Chng, Shivesh Ranjan, John H. L. Hansen, Massimiliano Todisco, Nicholas Evans

* 5 pages 

  Access Paper or Ask Questions

Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems

Sep 21, 2018
Dongkun Zhang, Lu Lu, Ling Guo, George Em Karniadakis


  Access Paper or Ask Questions