Abstract:Zero-shot learning (ZSL) aims to recognize unseen classes with zero samples by transferring semantic knowledge from seen classes. Current approaches typically correlate global visual features with semantic information (i.e., attributes) or align local visual region features with corresponding attributes to enhance visual-semantic interactions. Although effective, these methods often overlook the intrinsic interactions between local region features, which can further improve the acquisition of transferable and explicit visual features. In this paper, we propose a network named Multi-Granularity Mutual Refinement Network (Mg-MRN), which refine discriminative and transferable visual features by learning decoupled multi-granularity features and cross-granularity feature interactions. Specifically, we design a multi-granularity feature extraction module to learn region-level discriminative features through decoupled region feature mining. Then, a cross-granularity feature fusion module strengthens the inherent interactions between region features of varying granularities. This module enhances the discriminability of representations at each granularity level by integrating region representations from adjacent hierarchies, further improving ZSL recognition performance. Extensive experiments on three popular ZSL benchmark datasets demonstrate the superiority and competitiveness of our proposed Mg-MRN method. Our code is available at https://github.com/NingWang2049/Mg-MRN.




Abstract:Multispectral oriented object detection faces challenges due to both inter-modal and intra-modal discrepancies. Recent studies often rely on transformer-based models to address these issues and achieve cross-modal fusion detection. However, the quadratic computational complexity of transformers limits their performance. Inspired by the efficiency and lower complexity of Mamba in long sequence tasks, we propose Disparity-guided Multispectral Mamba (DMM), a multispectral oriented object detection framework comprised of a Disparity-guided Cross-modal Fusion Mamba (DCFM) module, a Multi-scale Target-aware Attention (MTA) module, and a Target-Prior Aware (TPA) auxiliary task. The DCFM module leverages disparity information between modalities to adaptively merge features from RGB and IR images, mitigating inter-modal conflicts. The MTA module aims to enhance feature representation by focusing on relevant target regions within the RGB modality, addressing intra-modal variations. The TPA auxiliary task utilizes single-modal labels to guide the optimization of the MTA module, ensuring it focuses on targets and their local context. Extensive experiments on the DroneVehicle and VEDAI datasets demonstrate the effectiveness of our method, which outperforms state-of-the-art methods while maintaining computational efficiency. Code will be available at https://github.com/Another-0/DMM.




Abstract:The astounding success made by artificial intelligence (AI) in healthcare and other fields proves that AI can achieve human-like performance. However, success always comes with challenges. Deep learning algorithms are data-dependent and require large datasets for training. The lack of data in the medical imaging field creates a bottleneck for the application of deep learning to medical image analysis. Medical image acquisition, annotation, and analysis are costly, and their usage is constrained by ethical restrictions. They also require many resources, such as human expertise and funding. That makes it difficult for non-medical researchers to have access to useful and large medical data. Thus, as comprehensive as possible, this paper provides a collection of medical image datasets with their associated challenges for deep learning research. We have collected information of around three hundred datasets and challenges mainly reported between 2013 and 2020 and categorized them into four categories: head & neck, chest & abdomen, pathology & blood, and ``others''. Our paper has three purposes: 1) to provide a most up to date and complete list that can be used as a universal reference to easily find the datasets for clinical image analysis, 2) to guide researchers on the methodology to test and evaluate their methods' performance and robustness on relevant datasets, 3) to provide a ``route'' to relevant algorithms for the relevant medical topics, and challenge leaderboards.