Abstract:Deep understanding of electromagnetic signals is fundamental to dynamic spectrum management, intelligent transportation, autonomous driving and unmanned vehicle perception. The field faces challenges because electromagnetic signals differ greatly from text and images, showing high heterogeneity, strong background noise and complex joint time frequency structure, which prevents existing general models from direct use. Electromagnetic communication and sensing tasks are diverse, current methods lack cross task generalization and transfer efficiency, and the scarcity of large high quality datasets blocks the creation of a truly general multitask learning framework. To overcome these issue, we introduce EMind, an electromagnetic signals foundation model that bridges large scale pretraining and the unique nature of this modality. We build the first unified and largest standardized electromagnetic signal dataset covering multiple signal types and tasks. By exploiting the physical properties of electromagnetic signals, we devise a length adaptive multi-signal packing method and a hardware-aware training strategy that enable efficient use and representation learning from heterogeneous multi-source signals. Experiments show that EMind achieves strong performance and broad generalization across many downstream tasks, moving decisively from task specific models to a unified framework for electromagnetic intelligence. The code is available at: https://github.com/GabrielleTse/EMind.
Abstract:Deep Learning is gaining traction with geophysics community to understand subsurface structures, such as fault detection or salt body in seismic data. This study describes using deep learning method for iceberg or ship recognition with synthetic aperture radar (SAR) data. Drifting icebergs pose a potential threat to activities offshore around the Arctic, including for both ship navigation and oil rigs. Advancement of satellite imagery using weather-independent cross-polarized radar has enabled us to monitor and delineate icebergs and ships, however a human component is needed to classify the images. Here we present Transfer Learning, a convolutional neural network (CNN) designed to work with a limited training data and features, while demonstrating its effectiveness in this problem. Key aspect of the approach is data augmentation and stacking of multiple outputs, resulted in a significant boost in accuracy (logarithmic score of 0.1463). This algorithm has been tested through participation at the Statoil/C-Core Kaggle competition.