Abstract:Object placement assessment (OPA) aims to predict the rationality score of a composite image in terms of the placement (e.g., scale, location) of inserted foreground object. However, given a pair of scaled foreground and background, to enumerate all the reasonable locations, existing OPA model needs to place the foreground at each location on the background and pass the obtained composite image through the model one at a time, which is very time-consuming. In this work, we investigate a new task named as fast OPA. Specifically, provided with a scaled foreground and a background, we only pass them through the model once and predict the rationality scores for all locations. To accomplish this task, we propose a pioneering fast OPA model with several innovations (i.e., foreground dynamic filter, background prior transfer, and composite feature mimicking) to bridge the performance gap between slow OPA model and fast OPA model. Extensive experiments on OPA dataset show that our proposed fast OPA model performs on par with slow OPA model but runs significantly faster.
Abstract:Video harmonization aims to adjust the foreground of a composite video to make it compatible with the background. So far, video harmonization has only received limited attention and there is no public dataset for video harmonization. In this work, we construct a new video harmonization dataset HYouTube by adjusting the foreground of real videos to create synthetic composite videos. Moreover, we consider the temporal consistency in video harmonization task. Unlike previous works which establish the spatial correspondence, we design a novel framework based on the assumption of color mapping consistency, which leverages the color mapping of neighboring frames to refine the current frame. Extensive experiments on our HYouTube dataset prove the effectiveness of our proposed framework. Our dataset and code are available at https://github.com/bcmi/Video-Harmonization-Dataset-HYouTube.
Abstract:Object detection has achieved promising success, but requires large-scale fully-annotated data, which is time-consuming and labor-extensive. Therefore, we consider object detection with mixed supervision, which learns novel object categories using weak annotations with the help of full annotations of existing base object categories. Previous works using mixed supervision mainly learn the class-agnostic objectness from fully-annotated categories, which can be transferred to upgrade the weak annotations to pseudo full annotations for novel categories. In this paper, we further transfer mask prior and semantic similarity to bridge the gap between novel categories and base categories. Specifically, the ability of using mask prior to help detect objects is learned from base categories and transferred to novel categories. Moreover, the semantic similarity between objects learned from base categories is transferred to denoise the pseudo full annotations for novel categories. Experimental results on three benchmark datasets demonstrate the effectiveness of our method over existing methods. Codes are available at https://github.com/bcmi/TraMaS-Weak-Shot-Object-Detection.
Abstract:Deep learning is a data-hungry approach, which requires massive training data. However, it is time-consuming and labor-intensive to collect abundant fully-annotated training data for all categories. Assuming the existence of base categories with adequate fully-annotated training samples, different paradigms requiring fewer training samples or weaker annotations for novel categories have attracted growing research interest. Among them, zero-shot (resp., few-shot) learning explores using zero (resp., a few) training samples for novel categories, which lowers the quantity requirement for novel categories. Instead, weak-shot learning lowers the quality requirement for novel categories. Specifically, sufficient training samples are collected for novel categories but they only have weak annotations. In different tasks, weak annotations are presented in different forms (e.g., noisy labels for image classification, image labels for object detection, bounding boxes for segmentation), similar to the definitions in weakly supervised learning. Therefore, weak-shot learning can also be treated as weakly supervised learning with auxiliary fully supervised categories. In this paper, we discuss the existing weak-shot learning methodologies in different tasks and summarize the codes at https://github.com/bcmi/Awesome-Weak-Shot-Learning.
Abstract:Weakly-supervised semantic segmentation (WSSS) with image-level labels has been widely studied to relieve the annotation burden of the traditional segmentation task. In this paper, we show that existing fully-annotated base categories can help segment objects of novel categories with only image-level labels, even if base and novel categories have no overlap. We refer to this task as weak-shot semantic segmentation, which could also be treated as WSSS with auxiliary fully-annotated categories. Recent advanced WSSS methods usually obtain class activation maps (CAMs) and refine them by affinity propagation. Based on the observation that semantic affinity and boundary are class-agnostic, we propose a method under the WSSS framework to transfer semantic affinity and boundary from base categories to novel ones. As a result, we find that pixel-level annotation of base categories can facilitate affinity learning and propagation, leading to higher-quality CAMs of novel categories. Extensive experiments on PASCAL VOC 2012 dataset demonstrate that our method significantly outperforms WSSS baselines on novel categories.
Abstract:Video composition aims to generate a composite video by combining the foreground of one video with the background of another video, but the inserted foreground may be incompatible with the background in terms of color and illumination. Video harmonization aims to adjust the foreground of a composite video to make it compatible with the background. So far, video harmonization has only received limited attention and there is no public dataset for video harmonization. In this work, we construct a new video harmonization dataset HYouTube by adjusting the foreground of real videos to create synthetic composite videos. Considering the domain gap between real composite videos and synthetic composite videos, we additionally create 100 real composite videos via copy-and-paste. Datasets are available at https://github.com/bcmi/Video-Harmonization-Dataset-HYouTube.
Abstract:Given a composite image, image harmonization aims to adjust the foreground to make it compatible with the background. High-resolution image harmonization is in high demand, but still remains unexplored. Conventional image harmonization methods learn global RGB-to-RGB transformation which could effortlessly scale to high resolution, but ignore diverse local context. Recent deep learning methods learn the dense pixel-to-pixel transformation which could generate harmonious outputs, but are highly constrained in low resolution. In this work, we propose a high-resolution image harmonization network with Collaborative Dual Transformation (CDTNet) to combine pixel-to-pixel transformation and RGB-to-RGB transformation coherently in an end-to-end framework. Our CDTNet consists of a low-resolution generator for pixel-to-pixel transformation, a color mapping module for RGB-to-RGB transformation, and a refinement module to take advantage of both. Extensive experiments on high-resolution image harmonization dataset demonstrate that our CDTNet strikes a good balance between efficiency and effectiveness.
Abstract:Superimposing visible watermarks on images provides a powerful weapon to cope with the copyright issue. Watermark removal techniques, which can strengthen the robustness of visible watermarks in an adversarial way, have attracted increasing research interest. Modern watermark removal methods perform watermark localization and background restoration simultaneously, which could be viewed as a multi-task learning problem. However, existing approaches suffer from incomplete detected watermark and degraded texture quality of restored background. Therefore, we design a two-stage multi-task network to address the above issues. The coarse stage consists of a watermark branch and a background branch, in which the watermark branch self-calibrates the roughly estimated mask and passes the calibrated mask to background branch to reconstruct the watermarked area. In the refinement stage, we integrate multi-level features to improve the texture quality of watermarked area. Extensive experiments on two datasets demonstrate the effectiveness of our proposed method.
Abstract:Image composition aims to generate realistic composite image by inserting an object from one image into another background image, where the placement (e.g., location, size, occlusion) of inserted object may be unreasonable, which would significantly degrade the quality of the composite image. Although some works attempted to learn object placement to create realistic composite images, they did not focus on assessing the plausibility of object placement. In this paper, we focus on object placement assessment task, which verifies whether a composite image is plausible in terms of the object placement. To accomplish this task, we construct the first Object Placement Assessment (OPA) dataset consisting of composite images and their rationality labels. Dataset is available at https://github.com/bcmi/Object-Placement-Assessment-Dataset-OPA.
Abstract:As a common image editing operation, image composition aims to cut the foreground from one image and paste it on another image, resulting in a composite image. However, there are many issues that could make the composite images unrealistic. These issues can be summarized as the inconsistency between foreground and background, which include appearance inconsistency (e.g., incompatible color and illumination) and geometry inconsistency (e.g., unreasonable size and location). Previous works on image composition target at one or more issues. Since each individual issue is a complicated problem, there are some research directions (e.g., image harmonization, object placement) which focus on only one issue. By putting all the efforts together, we can acquire realistic composite images. Sometimes, we expect the composite images to be not only realistic but also aesthetic, in which case aesthetic evaluation needs to be considered. In this survey, we summarize the datasets and methods for the above research directions. We also discuss the limitations and potential directions to facilitate the future research for image composition. Finally, as a double-edged sword, image composition may also have negative effect on our lives (e.g., fake news) and thus it is imperative to develop algorithms to fight against composite images. Datasets and codes for image composition are summarized at https://github.com/bcmi/Awesome-Image-Composition.