Justina
Abstract:Foundation Models (FMs) have shown remarkable capabilities in various natural language tasks. However, their ability to accurately capture stakeholder requirements remains a significant challenge for using FMs for software development. This paper introduces a novel approach that leverages an FM-powered multi-agent system called AlignMind to address this issue. By having a cognitive architecture that enhances FMs with Theory-of-Mind capabilities, our approach considers the mental states and perspectives of software makers. This allows our solution to iteratively clarify the beliefs, desires, and intentions of stakeholders, translating these into a set of refined requirements and a corresponding actionable natural language workflow in the often-overlooked requirements refinement phase of software engineering, which is crucial after initial elicitation. Through a multifaceted evaluation covering 150 diverse use cases, we demonstrate that our approach can accurately capture the intents and requirements of stakeholders, articulating them as both specifications and a step-by-step plan of action. Our findings suggest that the potential for significant improvements in the software development process justifies these investments. Our work lays the groundwork for future innovation in building intent-first development environments, where software makers can seamlessly collaborate with AIs to create software that truly meets their needs.
Abstract:Foundation Models (FMs) such as Large Language Models (LLMs) are reshaping the software industry by enabling FMware, systems that integrate these FMs as core components. In this KDD 2025 tutorial, we present a comprehensive exploration of FMware that combines a curated catalogue of challenges with real-world production concerns. We first discuss the state of research and practice in building FMware. We further examine the difficulties in selecting suitable models, aligning high-quality domain-specific data, engineering robust prompts, and orchestrating autonomous agents. We then address the complex journey from impressive demos to production-ready systems by outlining issues in system testing, optimization, deployment, and integration with legacy software. Drawing on our industrial experience and recent research in the area, we provide actionable insights and a technology roadmap for overcoming these challenges. Attendees will gain practical strategies to enable the creation of trustworthy FMware in the evolving technology landscape.
Abstract:Foundation models (FMs), such as Large Language Models (LLMs), have revolutionized software development by enabling new use cases and business models. We refer to software built using FMs as FMware. The unique properties of FMware (e.g., prompts, agents, and the need for orchestration), coupled with the intrinsic limitations of FMs (e.g., hallucination) lead to a completely new set of software engineering challenges. Based on our industrial experience, we identified 10 key SE4FMware challenges that have caused enterprise FMware development to be unproductive, costly, and risky. In this paper, we discuss these challenges in detail and state the path for innovation that we envision. Next, we present FMArts, which is our long-term effort towards creating a cradle-to-grave platform for the engineering of trustworthy FMware. Finally, we (i) show how the unique properties of FMArts enabled us to design and develop a complex FMware for a large customer in a timely manner and (ii) discuss the lessons that we learned in doing so. We hope that the disclosure of the aforementioned challenges and our associated efforts to tackle them will not only raise awareness but also promote deeper and further discussions, knowledge sharing, and innovative solutions across the software engineering discipline.