Abstract:Video Large Language Models (VideoLLMs) face a critical bottleneck: increasing the number of input frames to capture fine-grained temporal detail leads to prohibitive computational costs and performance degradation from long context lengths. We introduce Video Parallel Scaling (VPS), an inference-time method that expands a model's perceptual bandwidth without increasing its context window. VPS operates by running multiple parallel inference streams, each processing a unique, disjoint subset of the video's frames. By aggregating the output probabilities from these complementary streams, VPS integrates a richer set of visual information than is possible with a single pass. We theoretically show that this approach effectively contracts the Chinchilla scaling law by leveraging uncorrelated visual evidence, thereby improving performance without additional training. Extensive experiments across various model architectures and scales (2B-32B) on benchmarks such as Video-MME and EventHallusion demonstrate that VPS consistently and significantly improves performance. It scales more favorably than other parallel alternatives (e.g. Self-consistency) and is complementary to other decoding strategies, offering a memory-efficient and robust framework for enhancing the temporal reasoning capabilities of VideoLLMs.
Abstract:We introduce a diffusion-based framework that performs aligned novel view image and geometry generation via a warping-and-inpainting methodology. Unlike prior methods that require dense posed images or pose-embedded generative models limited to in-domain views, our method leverages off-the-shelf geometry predictors to predict partial geometries viewed from reference images, and formulates novel-view synthesis as an inpainting task for both image and geometry. To ensure accurate alignment between generated images and geometry, we propose cross-modal attention distillation, where attention maps from the image diffusion branch are injected into a parallel geometry diffusion branch during both training and inference. This multi-task approach achieves synergistic effects, facilitating geometrically robust image synthesis as well as well-defined geometry prediction. We further introduce proximity-based mesh conditioning to integrate depth and normal cues, interpolating between point cloud and filtering erroneously predicted geometry from influencing the generation process. Empirically, our method achieves high-fidelity extrapolative view synthesis on both image and geometry across a range of unseen scenes, delivers competitive reconstruction quality under interpolation settings, and produces geometrically aligned colored point clouds for comprehensive 3D completion. Project page is available at https://cvlab-kaist.github.io/MoAI.
Abstract:Multimodal Large Language Models (MLLMs) have demonstrated significant visual understanding capabilities, yet their fine-grained visual perception in complex real-world scenarios, such as densely crowded public areas, remains limited. Inspired by the recent success of reinforcement learning (RL) in both LLMs and MLLMs, in this paper, we explore how RL can enhance visual perception ability of MLLMs. Then we develop a novel RL-based framework, Deep Inspection and Perception with RL (DIP-R1) designed to enhance the visual perception capabilities of MLLMs, by comprehending complex scenes and looking through visual instances closely. DIP-R1 guides MLLMs through detailed inspection of visual scene via three simply designed rule-based reward modelings. First, we adopt a standard reasoning reward encouraging the model to include three step-by-step processes: 1) reasoning for understanding visual scenes, 2) observing for looking through interested but ambiguous regions, and 3) decision-making for predicting answer. Second, a variance-guided looking reward is designed to examine uncertain regions for the second observing process. It explicitly enables the model to inspect ambiguous areas, improving its ability to mitigate perceptual uncertainties. Third, we model a weighted precision-recall accuracy reward enhancing accurate decision-making. We explore its effectiveness across diverse fine-grained object detection data consisting of challenging real-world environments, such as densely crowded scenes. Built upon existing MLLMs, DIP-R1 achieves consistent and significant improvement across various in-domain and out-of-domain scenarios. It also outperforms various existing baseline models and supervised fine-tuning methods. Our findings highlight the substantial potential of integrating RL into MLLMs for enhancing capabilities in complex real-world perception tasks.
Abstract:Recent text-to-image generative models, particularly Stable Diffusion and its distilled variants, have achieved impressive fidelity and strong text-image alignment. However, their creative capability remains constrained, as including `creative' in prompts seldom yields the desired results. This paper introduces C3 (Creative Concept Catalyst), a training-free approach designed to enhance creativity in Stable Diffusion-based models. C3 selectively amplifies features during the denoising process to foster more creative outputs. We offer practical guidelines for choosing amplification factors based on two main aspects of creativity. C3 is the first study to enhance creativity in diffusion models without extensive computational costs. We demonstrate its effectiveness across various Stable Diffusion-based models.
Abstract:Understanding scene contexts is crucial for machines to perform tasks and adapt prior knowledge in unseen or noisy 3D environments. As data-driven learning is intractable to comprehensively encapsulate diverse ranges of layouts and open spaces, we propose teaching machines to identify relational commonalities in 3D spaces. Instead of focusing on point-wise or object-wise representations, we introduce 3D scene analogies, which are smooth maps between 3D scene regions that align spatial relationships. Unlike well-studied single instance-level maps, these scene-level maps smoothly link large scene regions, potentially enabling unique applications in trajectory transfer in AR/VR, long demonstration transfer for imitation learning, and context-aware object rearrangement. To find 3D scene analogies, we propose neural contextual scene maps, which extract descriptor fields summarizing semantic and geometric contexts, and holistically align them in a coarse-to-fine manner for map estimation. This approach reduces reliance on individual feature points, making it robust to input noise or shape variations. Experiments demonstrate the effectiveness of our approach in identifying scene analogies and transferring trajectories or object placements in diverse indoor scenes, indicating its potential for robotics and AR/VR applications.
Abstract:Text-to-image (T2I) models can effectively capture the content or style of reference images to perform high-quality customization. A representative technique for this is fine-tuning using low-rank adaptations (LoRA), which enables efficient model customization with reference images. However, fine-tuning with a limited number of reference images often leads to overfitting, resulting in issues such as prompt misalignment or content leakage. These issues prevent the model from accurately following the input prompt or generating undesired objects during inference. To address this problem, we examine the text embeddings that guide the diffusion model during inference. This study decomposes the text embedding matrix and conducts a component analysis to understand the embedding space geometry and identify the cause of overfitting. Based on this, we propose DECOR, which projects text embeddings onto a vector space orthogonal to undesired token vectors, thereby reducing the influence of unwanted semantics in the text embeddings. Experimental results demonstrate that DECOR outperforms state-of-the-art customization models and achieves Pareto frontier performance across text and visual alignment evaluation metrics. Furthermore, it generates images more faithful to the input prompts, showcasing its effectiveness in addressing overfitting and enhancing text-to-image customization.
Abstract:With the growing scale and complexity of video data, efficiently processing long video sequences poses significant challenges due to the quadratic increase in memory and computational demands associated with existing transformer-based Large Multi-modal Models (LMMs). To address these issues, we introduce Video-Ma$^2$mba, a novel architecture that incorporates State Space Models (SSMs) within the Mamba-2 framework, replacing the attention mechanisms. This allows the LMMs to scale linearly in terms of time and memory requirements, making it feasible to handle long-duration video content. Furthermore, we enhance the memory efficiency introducing the Multi-Axis Gradient Checkpointing (MA-GC) method, which strategically manages memory by retaining only essential activations across multiple computational axes. Our approach significantly reduces the memory footprint compared to standard gradient checkpointing. Empirical analyses show that Video-Ma$^2$mba can process extensive video sequences-equivalent to millions of tokens or over two hours of continuous sequences at 1 FPS-on a single GPU. By maintaining a detailed capture of temporal dynamics, our model improves the accuracy and relevance of responses in long video understanding tasks, demonstrating substantial advantages over existing frameworks.
Abstract:Despite advances in Large Multi-modal Models, applying them to long and untrimmed video content remains challenging due to limitations in context length and substantial memory overhead. These constraints often lead to significant information loss and reduced relevance in the model responses. With the exponential growth of video data across web platforms, understanding long-form video is crucial for advancing generalized intelligence. In this paper, we introduce SALOVA: Segment-Augmented LOng Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content through targeted retrieval process. We address two main challenges to achieve it: (i) We present the SceneWalk dataset, a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich descriptive context. (ii) We develop robust architectural designs integrating dynamic routing mechanism and spatio-temporal projector to efficiently retrieve and process relevant video segments based on user queries. Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries, thereby improving the contextual relevance of the generated responses. Through extensive experiments, SALOVA demonstrates enhanced capability in processing complex long-form videos, showing significant capability to maintain contextual integrity across extended sequences.
Abstract:The integration of deep learning technologies in medical imaging aims to enhance the efficiency and accuracy of cancer diagnosis, particularly for pancreatic and breast cancers, which present significant diagnostic challenges due to their high mortality rates and complex imaging characteristics. This paper introduces Diffusion-Driven Diagnosis (D-Cube), a novel approach that leverages hyper-features from a diffusion model combined with contrastive learning to improve cancer diagnosis. D-Cube employs advanced feature selection techniques that utilize the robust representational capabilities of diffusion models, enhancing classification performance on medical datasets under challenging conditions such as data imbalance and limited sample availability. The feature selection process optimizes the extraction of clinically relevant features, significantly improving classification accuracy and demonstrating resilience in imbalanced and limited data scenarios. Experimental results validate the effectiveness of D-Cube across multiple medical imaging modalities, including CT, MRI, and X-ray, showing superior performance compared to existing baseline models. D-Cube represents a new strategy in cancer detection, employing advanced deep learning techniques to achieve state-of-the-art diagnostic accuracy and efficiency.
Abstract:Category-agnostic pose estimation (CAPE) has traditionally relied on support images with annotated keypoints, a process that is often cumbersome and may fail to fully capture the necessary correspondences across diverse object categories. Recent efforts have begun exploring the use of text-based queries, where the need for support keypoints is eliminated. However, the optimal use of textual descriptions for keypoints remains an underexplored area. In this work, we introduce CapeLLM, a novel approach that leverages a text-based multimodal large language model (MLLM) for CAPE. Our method only employs query image and detailed text descriptions as an input to estimate category-agnostic keypoints. We conduct extensive experiments to systematically explore the design space of LLM-based CAPE, investigating factors such as choosing the optimal description for keypoints, neural network architectures, and training strategies. Thanks to the advanced reasoning capabilities of the pre-trained MLLM, CapeLLM demonstrates superior generalization and robust performance. Our approach sets a new state-of-the-art on the MP-100 benchmark in the challenging 1-shot setting, marking a significant advancement in the field of category-agnostic pose estimation.