Abstract:Deep generative models are proficient in generating realistic data but struggle with producing rare samples in low density regions due to their scarcity of training datasets and the mode collapse problem. While recent methods aim to improve the fidelity of generated samples, they often reduce diversity and coverage by ignoring rare and novel samples. This study proposes a novel approach for generating diverse rare samples from high-resolution image datasets with pretrained GANs. Our method employs gradient-based optimization of latent vectors within a multi-objective framework and utilizes normalizing flows for density estimation on the feature space. This enables the generation of diverse rare images, with controllable parameters for rarity, diversity, and similarity to a reference image. We demonstrate the effectiveness of our approach both qualitatively and quantitatively across various datasets and GANs without retraining or fine-tuning the pretrained GANs.
Abstract:In recent years, the application of transformer-based models in time-series forecasting has received significant attention. While often demonstrating promising results, the transformer architecture encounters challenges in fully exploiting the temporal relations within time series data due to its attention mechanism. In this work, we design eXponential Patch (xPatch for short), a novel dual-stream architecture that utilizes exponential decomposition. Inspired by the classical exponential smoothing approaches, xPatch introduces the innovative seasonal-trend exponential decomposition module. Additionally, we propose a dual-flow architecture that consists of an MLP-based linear stream and a CNN-based non-linear stream. This model investigates the benefits of employing patching and channel-independence techniques within a non-transformer model. Finally, we develop a robust arctangent loss function and a sigmoid learning rate adjustment scheme, which prevent overfitting and boost forecasting performance. The code is available at the following repository: https://github.com/stitsyuk/xPatch.
Abstract:Training data plays a pivotal role in AI models. Large language models (LLMs) are trained with massive amounts of documents, and their parameters hold document-related contents. Recently, several studies identified content-specific locations in LLMs by examining the parameters. Instead of the post hoc interpretation, we propose another approach. We propose document-wise memory architecture to track document memories in training. The proposed architecture maps document representations to memory entries, which softly mask memories in the forward process of LLMs. Additionally, we propose document guidance loss, which increases the likelihood of text with document memories and reduces the likelihood of the text with the memories of other documents. Experimental results on Wikitext-103-v1 with Pythia-1B show that the proposed methods provide different memory entries for documents and high recall of document-related content in generation with trained document-wise memories.
Abstract:Trend filtering simplifies complex time series data by applying smoothness to filter out noise while emphasizing proximity to the original data. However, existing trend filtering methods fail to reflect abrupt changes in the trend due to `approximateness,' resulting in constant smoothness. This approximateness uniformly filters out the tail distribution of time series data, characterized by extreme values, including both abrupt changes and noise. In this paper, we propose Trend Point Detection formulated as a Markov Decision Process (MDP), a novel approach to identifying essential points that should be reflected in the trend, departing from approximations. We term these essential points as Dynamic Trend Points (DTPs) and extract trends by interpolating them. To identify DTPs, we utilize Reinforcement Learning (RL) within a discrete action space and a forecasting sum-of-squares loss function as a reward, referred to as the Dynamic Trend Filtering network (DTF-net). DTF-net integrates flexible noise filtering, preserving critical original subsequences while removing noise as required for other subsequences. We demonstrate that DTF-net excels at capturing abrupt changes compared to other trend filtering algorithms and enhances forecasting performance, as abrupt changes are predicted rather than smoothed out.
Abstract:Capsule Neural Networks utilize capsules, which bind neurons into a single vector and learn position equivariant features, which makes them more robust than original Convolutional Neural Networks. CapsNets employ an affine transformation matrix and dynamic routing with coupling coefficients to learn robustly. In this paper, we investigate the effectiveness of CapsNets in analyzing highly sensitive and noisy time series sensor data. To demonstrate CapsNets robustness, we compare their performance with original CNNs on electrocardiogram data, a medical time series sensor data with complex patterns and noise. Our study provides empirical evidence that CapsNets function as noise stabilizers, as investigated by manual and adversarial attack experiments using the fast gradient sign method and three manual attacks, including offset shifting, gradual drift, and temporal lagging. In summary, CapsNets outperform CNNs in both manual and adversarial attacked data. Our findings suggest that CapsNets can be effectively applied to various sensor systems to improve their resilience to noise attacks. These results have significant implications for designing and implementing robust machine learning models in real world applications. Additionally, this study contributes to the effectiveness of CapsNet models in handling noisy data and highlights their potential for addressing the challenges of noise data in time series analysis.
Abstract:Capsule Neural Networks (CapsNets) is a novel architecture that utilizes vector-wise representations formed by multiple neurons. Specifically, the Dynamic Routing CapsNets (DR-CapsNets) employ an affine matrix and dynamic routing mechanism to train capsules and acquire translation-equivariance properties, enhancing its robustness compared to traditional Convolutional Neural Networks (CNNs). Echocardiograms, which capture moving images of the heart, present unique challenges for traditional image classification methods. In this paper, we explore the potential of DR-CapsNets and propose CardioCaps, a novel attention-based DR-CapsNet architecture for class-imbalanced echocardiogram classification. CardioCaps comprises two key components: a weighted margin loss incorporating a regression auxiliary loss and an attention mechanism. First, the weighted margin loss prioritizes positive cases, supplemented by an auxiliary loss function based on the Ejection Fraction (EF) regression task, a crucial measure of cardiac function. This approach enhances the model's resilience in the face of class imbalance. Second, recognizing the quadratic complexity of dynamic routing leading to training inefficiencies, we adopt the attention mechanism as a more computationally efficient alternative. Our results demonstrate that CardioCaps surpasses traditional machine learning baseline methods, including Logistic Regression, Random Forest, and XGBoost with sampling methods and a class weight matrix. Furthermore, CardioCaps outperforms other deep learning baseline methods such as CNNs, ResNets, U-Nets, and ViTs, as well as advanced CapsNets methods such as EM-CapsNets and Efficient-CapsNets. Notably, our model demonstrates robustness to class imbalance, achieving high precision even in datasets with a substantial proportion of negative cases.
Abstract:In Time Series Classification (TSC), temporal pooling methods that consider sequential information have been proposed. However, we found that each temporal pooling has a distinct mechanism, and can perform better or worse depending on time series data. We term this fixed pooling mechanism a single perspective of temporal poolings. In this paper, we propose a novel temporal pooling method with diverse perspective learning: Selection over Multiple Temporal Poolings (SoM-TP). SoM-TP dynamically selects the optimal temporal pooling among multiple methods for each data by attention. The dynamic pooling selection is motivated by the ensemble concept of Multiple Choice Learning (MCL), which selects the best among multiple outputs. The pooling selection by SoM-TP's attention enables a non-iterative pooling ensemble within a single classifier. Additionally, we define a perspective loss and Diverse Perspective Learning Network (DPLN). The loss works as a regularizer to reflect all the pooling perspectives from DPLN. Our perspective analysis using Layer-wise Relevance Propagation (LRP) reveals the limitation of a single perspective and ultimately demonstrates diverse perspective learning of SoM-TP. We also show that SoM-TP outperforms CNN models based on other temporal poolings and state-of-the-art models in TSC with extensive UCR/UEA repositories.
Abstract:Understanding intermediate representations of the concepts learned by deep learning classifiers is indispensable for interpreting general model behaviors. Existing approaches to reveal learned concepts often rely on human supervision, such as pre-defined concept sets or segmentation processes. In this paper, we propose a novel unsupervised method for discovering distributed representations of concepts by selecting a principal subset of neurons. Our empirical findings demonstrate that instances with similar neuron activation states tend to share coherent concepts. Based on the observations, the proposed method selects principal neurons that construct an interpretable region, namely a Relaxed Decision Region (RDR), encompassing instances with coherent concepts in the feature space. It can be utilized to identify unlabeled subclasses within data and to detect the causes of misclassifications. Furthermore, the applicability of our method across various layers discloses distinct distributed representations over the layers, which provides deeper insights into the internal mechanisms of the deep learning model.
Abstract:As systems based on opaque Artificial Intelligence (AI) continue to flourish in diverse real-world applications, understanding these black box models has become paramount. In response, Explainable AI (XAI) has emerged as a field of research with practical and ethical benefits across various domains. This paper not only highlights the advancements in XAI and its application in real-world scenarios but also addresses the ongoing challenges within XAI, emphasizing the need for broader perspectives and collaborative efforts. We bring together experts from diverse fields to identify open problems, striving to synchronize research agendas and accelerate XAI in practical applications. By fostering collaborative discussion and interdisciplinary cooperation, we aim to propel XAI forward, contributing to its continued success. Our goal is to put forward a comprehensive proposal for advancing XAI. To achieve this goal, we present a manifesto of 27 open problems categorized into nine categories. These challenges encapsulate the complexities and nuances of XAI and offer a road map for future research. For each problem, we provide promising research directions in the hope of harnessing the collective intelligence of interested stakeholders.
Abstract:Deep policy networks enable robots to learn behaviors to solve various real-world complex tasks in an end-to-end fashion. However, they lack transparency to provide the reasons of actions. Thus, such a black-box model often results in low reliability and disruptive actions during the deployment of the robot in practice. To enhance its transparency, it is important to explain robot behaviors by considering the extent to which each input feature contributes to determining a given action. In this paper, we present an explicit analysis of deep policy models through input attribution methods to explain how and to what extent each input feature affects the decisions of the robot policy models. To this end, we present two methods for applying input attribution methods to robot policy networks: (1) we measure the importance factor of each joint torque to reflect the influence of the motor torque on the end-effector movement, and (2) we modify a relevance propagation method to handle negative inputs and outputs in deep policy networks properly. To the best of our knowledge, this is the first report to identify the dynamic changes of input attributions of multi-modal sensor inputs in deep policy networks online for robotic manipulation.