ByteDance
Abstract:Multi-label learning deals with the problem that each instance is associated with multiple labels simultaneously. Most of the existing approaches aim to improve the performance of multi-label learning by exploiting label correlations. Although the data augmentation technique is widely used in many machine learning tasks, it is still unclear whether data augmentation is helpful to multi-label learning. In this paper, (to the best of our knowledge) we provide the first attempt to leverage the data augmentation technique to improve the performance of multi-label learning. Specifically, we first propose a novel data augmentation approach that performs clustering on the real examples and treats the cluster centers as virtual examples, and these virtual examples naturally embody the local label correlations and label importances. Then, motivated by the cluster assumption that examples in the same cluster should have the same label, we propose a novel regularization term to bridge the gap between the real examples and virtual examples, which can promote the local smoothness of the learning function. Extensive experimental results on a number of real-world multi-label data sets clearly demonstrate that our proposed approach outperforms the state-of-the-art counterparts.
Abstract:With the popularity and development of the wearable devices such as smartphones, human activity recognition (HAR) based on sensors has become as a key research area in human computer interaction and ubiquitous computing. The emergence of deep learning leads to a recent shift in the research of HAR, which requires massive strictly labeled data. In comparison with video data, activity data recorded from an accelerometer or gyroscope is often more difficult to interpret and segment. Recently, several attention mechanisms are proposed to handle the weakly labeled human activity data, which do not require accurate data annotation. However, these attention-based models can only handle the weakly labeled dataset whose segment includes one labeled activity, as a result it limits efficiency and practicality. In the paper, we proposed a recurrent attention network to handle sequential activity recognition and location tasks. The model can repeatedly perform steps of attention on multiple activities of one segment and each step is corresponding to the current focused activity according to its previous observations. The effectiveness of the recurrent attention model is validated by comparing with a baseline CNN, on the UniMiB-SHAR dataset and a collected sequential weakly labeled multi-activity dataset. The experiment results show that our recurrent attention model not only can perform single activity recognition tasks, but also can recognize and locate sequential weakly labeled multi-activity data. Besides, the recurrent attention can greatly facilitate the process of sensor data accumulation by automatically segmenting the regions of interest.
Abstract:Known as two cornerstones of problem solving by search, exploitation and exploration are extensively discussed for implementation and application of evolutionary algorithms (EAs). However, only a few researches focus on evaluation and theoretical estimation of exploitation and exploration. Considering that exploitation and exploration are two issues regarding global search and local search, this paper proposes to evaluate them via the success probability and the one-step improvement rate computed in different domains of integration. Then, case studies are performed by analyzing performances of (1+1) random univariate search and (1+1) evolutionary programming on the sphere function and the cheating problem. By rigorous theoretical analysis, we demonstrate that both exploitation and exploration of the investigated elitist EAs degenerate exponentially with the problem dimension $n$. Meanwhile, it is also shown that maximization of exploitation and exploration can be achieved by setting an appropriate value for the standard deviation $\sigma$ of Gaussian mutation, which is positively related to the distance from the present solution to the center of the promising region.
Abstract:Sequential visual task usually requires to pay attention to its current interested object conditional on its previous observations. Different from popular soft attention mechanism, we propose a new attention framework by introducing a novel conditional global feature which represents the weak feature descriptor of the current focused object. Specifically, for a standard CNN (Convolutional Neural Network) pipeline, the convolutional layers with different receptive fields are used to produce the attention maps by measuring how the convolutional features align to the conditional global feature. The conditional global feature can be generated by different recurrent structure according to different visual tasks, such as a simple recurrent neural network for multiple objects recognition, or a moderate complex language model for image caption. Experiments show that our proposed conditional attention model achieves the best performance on the SVHN (Street View House Numbers) dataset with / without extra bounding box; and for image caption, our attention model generates better scores than the popular soft attention model.
Abstract:When evolutionary algorithms (EAs) are unlikely to locate precise global optimal solutions with satisfactory performances, it is important to substitute alternative theoretical routine for the analysis of hitting time/running time. In order to narrow the gap between theories and applications, this paper is dedicated to perform an analysis on approximation error of EAs. First, we proposed a general result on upper bound and lower bound of approximation errors. Then, several case studies are performed to present the routine of error analysis, and theoretical results show the close connections between approximation errors and eigenvalues of transition matrices. The analysis validates applicability of error analysis, demonstrates significance of estimation results, and then, exhibits its potential to be applied for theoretical analysis of elitist EAs.
Abstract:Performance analysis of all kinds of randomised search heuristics is a rapidly growing and developing field. Run time and solution quality are two popular measures of the performance of these algorithms. The focus of this paper is on the solution quality an optimisation heuristic achieves, not on the time it takes to reach this goal, setting it far apart from runtime analysis. We contribute to its further development by introducing a novel analytical framework, called unlimited budget analysis, to derive the expected fitness value after arbitrary computational steps. It has its roots in the very recently introduced approximation error analysis and bears some similarity to fixed budget analysis. We present the framework, apply it to simple mutation-based algorithms, covering both, local and global search. We provide analytical results for a number of pseudo-Boolean functions for unlimited budget analysis and compare them to results derived within the fixed budget framework for the same algorithms and functions. There are also results of experiments to compare bounds obtained in the two different frameworks with the actual observed performance. The study show that unlimited budget analysis may lead to the same or more general estimation beyond fixed budget.
Abstract:Unlike images or videos data which can be easily labeled by human being, sensor data annotation is a time-consuming process. However, traditional methods of human activity recognition require a large amount of such strictly labeled data for training classifiers. In this paper, we present an attention-based convolutional neural network for human recognition from weakly labeled data. The proposed attention model can focus on labeled activity among a long sequence of sensor data, and while filter out a large amount of background noise signals. In experiment on the weakly labeled dataset, we show that our attention model outperforms classical deep learning methods in accuracy. Besides, we determine the specific locations of the labeled activity in a long sequence of weakly labeled data by converting the compatibility score which is generated from attention model to compatibility density. Our method greatly facilitates the process of sensor data annotation, and makes data collection more easy.
Abstract:A good convergence metric must satisfy two requirements: feasible in calculation and rigorous in analysis. The average convergence rate is proposed as a new measurement for evaluating the convergence speed of evolutionary algorithms over consecutive generations. Its calculation is simple in practice and it is applicable to both continuous and discrete optimization. Previously a theoretical study of the average convergence rate was conducted for discrete optimization. This paper makes a further analysis for continuous optimization. First, the strategies of generating new solutions are classified into two categories: landscape-invariant and landscape-adaptive. Then, it is proven that the average convergence rate of evolutionary algorithms using landscape-invariant generators converges to zero, while the rate of algorithms using positive-adaptive generators has a positive limit. Finally, two case studies, the minimization problems of the two-dimensional sphere function and Rastrigin function, are made for demonstrating the applicability of the theory.
Abstract:In the empirical study of evolutionary algorithms, the solution quality is evaluated by either the fitness value or approximation error. The latter measures the fitness difference between an approximation solution and the optimal solution. Since the approximation error analysis is more convenient than the direct estimation of the fitness value, this paper focuses on approximation error analysis. However, it is straightforward to extend all related results from the approximation error to the fitness value. Although the evaluation of solution quality plays an essential role in practice, few rigorous analyses have been conducted on this topic. This paper aims at establishing a novel theoretical framework of approximation error analysis of evolutionary algorithms for discrete optimization. This framework is divided into two parts. The first part is about exact expressions of the approximation error. Two methods, Jordan form and Schur's triangularization, are presented to obtain an exact expression. The second part is about upper bounds on approximation error. Two methods, convergence rate and auxiliary matrix iteration, are proposed to estimate the upper bound. The applicability of this framework is demonstrated through several examples.
Abstract:User intended actions are widely seen in many areas. Forecasting these actions and taking proactive measures to optimize business outcome is a crucial step towards sustaining the steady business growth. In this work, we focus on pre- dicting attrition, which is one of typical user intended actions. Conventional attrition predictive modeling strategies suffer a few inherent drawbacks. To overcome these limitations, we propose a novel end-to-end learning scheme to keep track of the evolution of attrition patterns for the predictive modeling. It integrates user activity logs, dynamic and static user profiles based on multi-path learning. It exploits historical user records by establishing a decaying multi-snapshot technique. And finally it employs the precedent user intentions via guiding them to the subsequent learning procedure. As a result, it addresses all disadvantages of conventional methods. We evaluate our methodology on two public data repositories and one private user usage dataset provided by Adobe Creative Cloud. The extensive experiments demonstrate that it can offer the appealing performance in comparison with several existing approaches as rated by different popular metrics. Furthermore, we introduce an advanced interpretation and visualization strategy to effectively characterize the periodicity of user activity logs. It can help to pinpoint important factors that are critical to user attrition and retention and thus suggests actionable improvement targets for business practice. Our work will provide useful insights into the prediction and elucidation of other user intended actions as well.