Abstract:In this paper, we efficiently transfer the surpassing representation power of the vision foundation models, such as ViT and Swin, for video understanding with only a few trainable parameters. Previous adaptation methods have simultaneously considered spatial and temporal modeling with a unified learnable module but still suffered from fully leveraging the representative capabilities of image transformers. We argue that the popular dual-path (two-stream) architecture in video models can mitigate this problem. We propose a novel DualPath adaptation separated into spatial and temporal adaptation paths, where a lightweight bottleneck adapter is employed in each transformer block. Especially for temporal dynamic modeling, we incorporate consecutive frames into a grid-like frameset to precisely imitate vision transformers' capability that extrapolates relationships between tokens. In addition, we extensively investigate the multiple baselines from a unified perspective in video understanding and compare them with DualPath. Experimental results on four action recognition benchmarks prove that pretrained image transformers with DualPath can be effectively generalized beyond the data domain.
Abstract:Text-to-3D generation has shown rapid progress in recent days with the advent of score distillation, a methodology of using pretrained text-to-2D diffusion models to optimize neural radiance field (NeRF) in the zero-shot setting. However, the lack of 3D awareness in the 2D diffusion models destabilizes score distillation-based methods from reconstructing a plausible 3D scene. To address this issue, we propose 3DFuse, a novel framework that incorporates 3D awareness into pretrained 2D diffusion models, enhancing the robustness and 3D consistency of score distillation-based methods. We realize this by first constructing a coarse 3D structure of a given text prompt and then utilizing projected, view-specific depth map as a condition for the diffusion model. Additionally, we introduce a training strategy that enables the 2D diffusion model learns to handle the errors and sparsity within the coarse 3D structure for robust generation, as well as a method for ensuring semantic consistency throughout all viewpoints of the scene. Our framework surpasses the limitations of prior arts, and has significant implications for 3D consistent generation of 2D diffusion models.
Abstract:The goal of this work is zero-shot text-to-speech synthesis, with speaking styles and voices learnt from facial characteristics. Inspired by the natural fact that people can imagine the voice of someone when they look at his or her face, we introduce a face-styled diffusion text-to-speech (TTS) model within a unified framework learnt from visible attributes, called Face-TTS. This is the first time that face images are used as a condition to train a TTS model. We jointly train cross-model biometrics and TTS models to preserve speaker identity between face images and generated speech segments. We also propose a speaker feature binding loss to enforce the similarity of the generated and the ground truth speech segments in speaker embedding space. Since the biometric information is extracted directly from the face image, our method does not require extra fine-tuning steps to generate speech from unseen and unheard speakers. We train and evaluate the model on the LRS3 dataset, an in-the-wild audio-visual corpus containing background noise and diverse speaking styles. The project page is https://facetts.github.io.
Abstract:Multi-resolution hash encoding has recently been proposed to reduce the computational cost of neural renderings, such as NeRF. This method requires accurate camera poses for the neural renderings of given scenes. However, contrary to previous methods jointly optimizing camera poses and 3D scenes, the naive gradient-based camera pose refinement method using multi-resolution hash encoding severely deteriorates performance. We propose a joint optimization algorithm to calibrate the camera pose and learn a geometric representation using efficient multi-resolution hash encoding. Showing that the oscillating gradient flows of hash encoding interfere with the registration of camera poses, our method addresses the issue by utilizing smooth interpolation weighting to stabilize the gradient oscillation for the ray samplings across hash grids. Moreover, the curriculum training procedure helps to learn the level-wise hash encoding, further increasing the pose refinement. Experiments on the novel-view synthesis datasets validate that our learning frameworks achieve state-of-the-art performance and rapid convergence of neural rendering, even when initial camera poses are unknown.
Abstract:Efficient video-language modeling should consider the computational cost because of a large, sometimes intractable, number of video frames. Parametric approaches such as the attention mechanism may not be ideal since its computational cost quadratically increases as the video length increases. Rather, previous studies have relied on offline feature extraction or frame sampling to represent the video efficiently, focusing on cross-modal modeling in short video clips. In this paper, we propose a semi-parametric video-grounded text generation model, SeViT, a novel perspective on scalable video-language modeling toward long untrimmed videos. Treating a video as an external data store, SeViT includes a non-parametric frame retriever to select a few query-relevant frames from the data store for a given query and a parametric generator to effectively aggregate the frames with the query via late fusion methods. Experimental results demonstrate our method has a significant advantage in longer videos and causal video understanding. Moreover, our model achieves the new state of the art on four video-language datasets, iVQA (+4.8), Next-QA (+6.9), and Activitynet-QA (+4.8) in accuracy, and MSRVTT-Caption (+3.6) in CIDEr.
Abstract:Multi-domain Neural Machine Translation (NMT) trains a single model with multiple domains. It is appealing because of its efficacy in handling multiple domains within one model. An ideal multi-domain NMT should learn distinctive domain characteristics simultaneously, however, grasping the domain peculiarity is a non-trivial task. In this paper, we investigate domain-specific information through the lens of mutual information (MI) and propose a new objective that penalizes low MI to become higher. Our method achieved the state-of-the-art performance among the current competitive multi-domain NMT models. Also, we empirically show our objective promotes low MI to be higher resulting in domain-specialized multi-domain NMT.
Abstract:Given an untrimmed video and a language query depicting a specific temporal moment in the video, video grounding aims to localize the time interval by understanding the text and video simultaneously. One of the most challenging issues is an extremely time- and cost-consuming annotation collection, including video captions in a natural language form and their corresponding temporal regions. In this paper, we present a simple yet novel training framework for video grounding in the zero-shot setting, which learns a network with only video data without any annotation. Inspired by the recent language-free paradigm, i.e. training without language data, we train the network without compelling the generation of fake (pseudo) text queries into a natural language form. Specifically, we propose a method for learning a video grounding model by selecting a temporal interval as a hypothetical correct answer and considering the visual feature selected by our method in the interval as a language feature, with the help of the well-aligned visual-language space of CLIP. Extensive experiments demonstrate the prominence of our language-free training framework, outperforming the existing zero-shot video grounding method and even several weakly-supervised approaches with large margins on two standard datasets.
Abstract:We present a novel method for exemplar-based image translation, called matching interleaved diffusion models (MIDMs). Most existing methods for this task were formulated as GAN-based matching-then-generation framework. However, in this framework, matching errors induced by the difficulty of semantic matching across cross-domain, e.g., sketch and photo, can be easily propagated to the generation step, which in turn leads to degenerated results. Motivated by the recent success of diffusion models overcoming the shortcomings of GANs, we incorporate the diffusion models to overcome these limitations. Specifically, we formulate a diffusion-based matching-and-generation framework that interleaves cross-domain matching and diffusion steps in the latent space by iteratively feeding the intermediate warp into the noising process and denoising it to generate a translated image. In addition, to improve the reliability of the diffusion process, we design a confidence-aware process using cycle-consistency to consider only confident regions during translation. Experimental results show that our MIDMs generate more plausible images than state-of-the-art methods.
Abstract:Electrocardiogram (ECG) signals are beneficial in diagnosing cardiovascular diseases, which are one of the leading causes of death. However, they are often contaminated by noise artifacts and affect the automatic and manual diagnosis process. Automatic deep learning-based examination of ECG signals can lead to inaccurate diagnosis, and manual analysis involves rejection of noisy ECG samples by clinicians, which might cost extra time. To address this limitation, we present a two-stage deep learning-based framework to automatically detect the noisy ECG samples. Through extensive experiments and analysis on two different datasets, we observe that the deep learning-based framework can detect slightly and highly noisy ECG samples effectively. We also study the transfer of the model learned on one dataset to another dataset and observe that the framework effectively detects noisy ECG samples.
Abstract:Online stereo adaptation tackles the domain shift problem, caused by different environments between synthetic (training) and real (test) datasets, to promptly adapt stereo models in dynamic real-world applications such as autonomous driving. However, previous methods often fail to counteract particular regions related to dynamic objects with more severe environmental changes. To mitigate this issue, we propose to incorporate an auxiliary point-selective network into a meta-learning framework, called PointFix, to provide a robust initialization of stereo models for online stereo adaptation. In a nutshell, our auxiliary network learns to fix local variants intensively by effectively back-propagating local information through the meta-gradient for the robust initialization of the baseline model. This network is model-agnostic, so can be used in any kind of architectures in a plug-and-play manner. We conduct extensive experiments to verify the effectiveness of our method under three adaptation settings such as short-, mid-, and long-term sequences. Experimental results show that the proper initialization of the base stereo model by the auxiliary network enables our learning paradigm to achieve state-of-the-art performance at inference.