Abstract:Evaluating large language models (LLMs) is increasingly confounded by \emph{variant contamination}: the training corpus contains semantically equivalent yet lexically or syntactically altered versions of test items. Unlike verbatim leakage, these paraphrased or structurally transformed variants evade existing detectors based on sampling consistency or perplexity, thereby inflating benchmark scores via memorization rather than genuine reasoning. We formalize this problem and introduce \textbf{DVD} (\textbf{D}etection via \textbf{V}ariance of generation \textbf{D}istribution), a single-sample detector that models the local output distribution induced by temperature sampling. Our key insight is that contaminated items trigger alternation between a \emph{memory-adherence} state and a \emph{perturbation-drift} state, yielding abnormally high variance in the synthetic difficulty of low-probability tokens; uncontaminated items remain in drift with comparatively smooth variance. We construct the first benchmark for variant contamination across two domains Omni-MATH and SuperGPQA by generating and filtering semantically equivalent variants, and simulate contamination via fine-tuning models of different scales and architectures (Qwen2.5 and Llama3.1). Across datasets and models, \textbf{DVD} consistently outperforms perplexity-based, Min-$k$\%++, edit-distance (CDD), and embedding-similarity baselines, while exhibiting strong robustness to hyperparameters. Our results establish variance of the generation distribution as a principled and practical fingerprint for detecting variant contamination in LLM evaluation.
Abstract:Humor is a fundamental facet of human cognition and interaction. Yet, despite recent advances in natural language processing, humor detection remains a challenging task that is complicated by the scarcity of datasets that pair humorous texts with similar non-humorous counterparts. In our work, we investigate whether large language models (LLMs), can generate synthetic data for humor detection via editing texts. We benchmark LLMs on an existing human dataset and show that current LLMs display an impressive ability to `unfun' jokes, as judged by humans and as measured on the downstream task of humor detection. We extend our approach to a code-mixed English-Hindi humor dataset, where we find that GPT-4's synthetic data is highly rated by bilingual annotators and provides challenging adversarial examples for humor classifiers.