Abstract:Diligently gathered human demonstrations serve as the unsung heroes empowering the progression of robot learning. Today, demonstrations are collected by training people to use specialized controllers, which (tele-)operate robots to manipulate a small number of objects. By contrast, we introduce AR2-D2: a system for collecting demonstrations which (1) does not require people with specialized training, (2) does not require any real robots during data collection, and therefore, (3) enables manipulation of diverse objects with a real robot. AR2-D2 is a framework in the form of an iOS app that people can use to record a video of themselves manipulating any object while simultaneously capturing essential data modalities for training a real robot. We show that data collected via our system enables the training of behavior cloning agents in manipulating real objects. Our experiments further show that training with our AR data is as effective as training with real-world robot demonstrations. Moreover, our user study indicates that users find AR2-D2 intuitive to use and require no training in contrast to four other frequently employed methods for collecting robot demonstrations.
Abstract:Humans with an average level of social cognition can infer the beliefs of others based solely on the nonverbal communication signals (e.g. gaze, gesture, pose and contextual information) exhibited during social interactions. This social cognitive ability to predict human beliefs and intentions is more important than ever for ensuring safe human-robot interaction and collaboration. This paper uses the combined knowledge of Theory of Mind (ToM) and Object-Context Relations to investigate methods for enhancing collaboration between humans and autonomous systems in environments where verbal communication is prohibited. We propose a novel and challenging multimodal video dataset for assessing the capability of artificial intelligence (AI) systems in predicting human belief states in an object-context scenario. The proposed dataset consists of precise labelling of human belief state ground-truth and multimodal inputs replicating all nonverbal communication inputs captured by human perception. We further evaluate our dataset with existing deep learning models and provide new insights into the effects of the various input modalities and object-context relations on the performance of the baseline models.
Abstract:In reality, it is often more efficient to ask for help than to search the entire space to find an object with an unknown location. We present a learning framework that enables an agent to actively ask for help in such embodied visual navigation tasks, where the feedback informs the agent of where the goal is in its view. To emulate the real-world scenario that a teacher may not always be present, we propose a training curriculum where feedback is not always available. We formulate an uncertainty measure of where the goal is and use empirical results to show that through this approach, the agent learns to ask for help effectively while remaining robust when feedback is not available.
Abstract:Children's cognitive abilities are sometimes cited as AI benchmarks. How can the most common 1,000 concepts (89\% of everyday use) be learnt in a naturalistic children's setting? Cognitive development in children is about quality, and new concepts can be conveyed via simple examples. Our approach of knowledge scaffolding uses simple objects and actions to convey concepts, like how children are taught. We introduce ABCDE, an interactive 3D environment modeled after a typical playroom for children. It comes with 300+ unique 3D object assets (mostly toys), and a large action space for child and parent agents to interact with objects and each other. ABCDE is the first environment aimed at mimicking a naturalistic setting for cognitive development in children; no other environment focuses on high-level concept learning through learner-teacher interactions. The simulator can be found at https://pypi.org/project/ABCDESim/1.0.0/
Abstract:Research in cognitive science has provided extensive evidence on human cognitive ability in performing physical reasoning of objects from noisy perceptual inputs. Such a cognitive ability is commonly known as intuitive physics. With the advancements in deep learning, there is an increasing interest in building intelligent systems that are capable of performing physical reasoning from a given scene for the purpose of advancing fluid and building safer AI systems. As a result, many of the contemporary approaches in modelling intuitive physics for machine cognition have been inspired by literature from cognitive science. Despite the wide range of work in physical reasoning for machine cognition, there is a scarcity of reviews that organize and group these deep learning approaches. Especially at the intersection of intuitive physics and artificial intelligence, there is a need to make sense of the diverse range of ideas and approaches. Therefore, this paper presents a comprehensive survey of recent advances and techniques in intuitive physics-inspired deep learning approaches for physical reasoning. The survey will first categorize existing deep learning approaches into three facets of physical reasoning before organizing them into three general technical approaches and propose six categorical tasks of the field. Finally, we highlight the challenges of the current field and present some future research directions.
Abstract:Recent work in computer vision and cognitive reasoning has given rise to an increasing adoption of the Violation-of-Expectation (VoE) paradigm in synthetic datasets. Inspired by infant psychology, researchers are now evaluating a model's ability to label scenes as either expected or surprising with knowledge of only expected scenes. However, existing VoE-based 3D datasets in physical reasoning provide mainly vision data with little to no heuristics or inductive biases. Cognitive models of physical reasoning reveal infants create high-level abstract representations of objects and interactions. Capitalizing on this knowledge, we established a benchmark to study physical reasoning by curating a novel large-scale synthetic 3D VoE dataset armed with ground-truth heuristic labels of causally relevant features and rules. To validate our dataset in five event categories of physical reasoning, we benchmarked and analyzed human performance. We also proposed the Object File Physical Reasoning Network (OFPR-Net) which exploits the dataset's novel heuristics to outperform our baseline and ablation models. The OFPR-Net is also flexible in learning an alternate physical reality, showcasing its ability to learn universal causal relationships in physical reasoning to create systems with better interpretability.
Abstract:Recent work in cognitive reasoning and computer vision has engendered an increasing popularity for the Violation-of-Expectation (VoE) paradigm in synthetic datasets. Inspired by work in infant psychology, researchers have started evaluating a model's ability to discriminate between expected and surprising scenes as a sign of its reasoning ability. Existing VoE-based 3D datasets in physical reasoning only provide vision data. However, current cognitive models of physical reasoning by psychologists reveal infants create high-level abstract representations of objects and interactions. Capitalizing on this knowledge, we propose AVoE: a synthetic 3D VoE-based dataset that presents stimuli from multiple novel sub-categories for five event categories of physical reasoning. Compared to existing work, AVoE is armed with ground-truth labels of abstract features and rules augmented to vision data, paving the way for high-level symbolic predictions in physical reasoning tasks.
Abstract:To align advanced artificial intelligence (AI) with human values and promote safe AI, it is important for AI to predict the outcome of physical interactions. Even with the ongoing debates on how humans predict the outcomes of physical interactions among objects in the real world, there are works attempting to tackle this task via cognitive-inspired AI approaches. However, there is still a lack of AI approaches that mimic the mental imagery humans use to predict physical interactions in the real world. In this work, we propose a novel PIP scheme: Physical Interaction Prediction via Mental Imagery with Span Selection. PIP utilizes a deep generative model to output future frames of physical interactions among objects before extracting crucial information for predicting physical interactions by focusing on salient frames using span selection. To evaluate our model, we propose a large-scale SPACE+ dataset of synthetic video frames, including three physical interaction events in a 3D environment. Our experiments show that PIP outperforms baselines and human performance in physical interaction prediction for both seen and unseen objects. Furthermore, PIP's span selection scheme can effectively identify the frames where physical interactions among objects occur within the generated frames, allowing for added interpretability.
Abstract:Recent advancements in deep learning, computer vision, and embodied AI have given rise to synthetic causal reasoning video datasets. These datasets facilitate the development of AI algorithms that can reason about physical interactions between objects. However, datasets thus far have primarily focused on elementary physical events such as rolling or falling. There is currently a scarcity of datasets that focus on the physical interactions that humans perform daily with objects in the real world. To address this scarcity, we introduce SPACE: A Simulator for Physical Interactions and Causal Learning in 3D Environments. The SPACE simulator allows us to generate the SPACE dataset, a synthetic video dataset in a 3D environment, to systematically evaluate physics-based models on a range of physical causal reasoning tasks. Inspired by daily object interactions, the SPACE dataset comprises videos depicting three types of physical events: containment, stability and contact. These events make up the vast majority of the basic physical interactions between objects. We then further evaluate it with a state-of-the-art physics-based deep model and show that the SPACE dataset improves the learning of intuitive physics with an approach inspired by curriculum learning. Repository: https://github.com/jiafei1224/SPACE
Abstract:There has been an emerging paradigm shift from the era of "internet AI" to "embodied AI", whereby AI algorithms and agents no longer simply learn from datasets of images, videos or text curated primarily from the internet. Instead, they learn through embodied physical interactions with their environments, whether real or simulated. Consequently, there has been substantial growth in the demand for embodied AI simulators to support a diversity of embodied AI research tasks. This growing interest in embodied AI is beneficial to the greater pursuit of artificial general intelligence, but there is no contemporary and comprehensive survey of this field. This paper comprehensively surveys state-of-the-art embodied AI simulators and research, mapping connections between these. By benchmarking nine state-of-the-art embodied AI simulators in terms of seven features, this paper aims to understand the simulators in their provision for use in embodied AI research. Finally, based upon the simulators and a pyramidal hierarchy of embodied AI research tasks, this paper surveys the main research tasks in embodied AI -- visual exploration, visual navigation and embodied question answering (QA), covering the state-of-the-art approaches, evaluation and datasets.