Abstract:Graph-based social recommendation (SocialRec) has emerged as a powerful extension of graph collaborative filtering (GCF), which leverages graph neural networks (GNNs) to capture multi-hop collaborative signals from user-item interactions. These methods enrich user representations by incorporating social network information into GCF, thereby integrating additional collaborative signals from social relations. However, existing GCF and graph-based SocialRec approaches face significant challenges: they incur high computational costs and suffer from limited scalability due to the large number of parameters required to assign explicit embeddings to all users and items. In this work, we propose PULSE (Parameter-efficient User representation Learning with Social Knowledge), a framework that addresses this limitation by constructing user representations from socially meaningful signals without creating an explicit learnable embedding for each user. PULSE reduces the parameter size by up to 50% compared to the most lightweight GCF baseline. Beyond parameter efficiency, our method achieves state-of-the-art performance, outperforming 13 GCF and graph-based social recommendation baselines across varying levels of interaction sparsity, from cold-start to highly active users, through a time- and memory-efficient modeling process.
Abstract:Few-shot node classification on hypergraphs requires models that generalize from scarce labels while capturing high-order structures. Existing hypergraph neural networks (HNNs) effectively encode such structures but often suffer from overfitting and scalability issues due to complex, black-box architectures. In this work, we propose ZEN (Zero-Parameter Hypergraph Neural Network), a fully linear and parameter-free model that achieves both expressiveness and efficiency. Built upon a unified formulation of linearized HNNs, ZEN introduces a tractable closed-form solution for the weight matrix and a redundancy-aware propagation scheme to avoid iterative training and to eliminate redundant self information. On 11 real-world hypergraph benchmarks, ZEN consistently outperforms eight baseline models in classification accuracy while achieving up to 696x speedups over the fastest competitor. Moreover, the decision process of ZEN is fully interpretable, providing insights into the characteristic of a dataset. Our code and datasets are fully available at https://github.com/chaewoonbae/ZEN.