Abstract:Graph-based social recommendation (SocialRec) has emerged as a powerful extension of graph collaborative filtering (GCF), which leverages graph neural networks (GNNs) to capture multi-hop collaborative signals from user-item interactions. These methods enrich user representations by incorporating social network information into GCF, thereby integrating additional collaborative signals from social relations. However, existing GCF and graph-based SocialRec approaches face significant challenges: they incur high computational costs and suffer from limited scalability due to the large number of parameters required to assign explicit embeddings to all users and items. In this work, we propose PULSE (Parameter-efficient User representation Learning with Social Knowledge), a framework that addresses this limitation by constructing user representations from socially meaningful signals without creating an explicit learnable embedding for each user. PULSE reduces the parameter size by up to 50% compared to the most lightweight GCF baseline. Beyond parameter efficiency, our method achieves state-of-the-art performance, outperforming 13 GCF and graph-based social recommendation baselines across varying levels of interaction sparsity, from cold-start to highly active users, through a time- and memory-efficient modeling process.
Abstract:We revisit DropEdge, a data augmentation technique for GNNs which randomly removes edges to expose diverse graph structures during training. While being a promising approach to effectively reduce overfitting on specific connections in the graph, we observe that its potential performance gain in supervised learning tasks is significantly limited. To understand why, we provide a theoretical analysis showing that the limited performance of DropEdge comes from the fundamental limitation that exists in many GNN architectures. Based on this analysis, we propose Aggregation Buffer, a parameter block specifically designed to improve the robustness of GNNs by addressing the limitation of DropEdge. Our method is compatible with any GNN model, and shows consistent performance improvements on multiple datasets. Moreover, our method effectively addresses well-known problems such as degree bias or structural disparity as a unifying solution. Code and datasets are available at https://github.com/dooho00/agg-buffer.