Abstract:Reinforcement Learning (RL) is a promising approach for achieving autonomous driving due to robust decision-making capabilities. RL learns a driving policy through trial and error in traffic scenarios, guided by a reward function that combines the driving objectives. The design of such reward function has received insufficient attention, yielding ill-defined rewards with various pitfalls. Safety, in particular, has long been regarded only as a penalty for collisions. This leaves the risks associated with actions leading up to a collision unaddressed, limiting the applicability of RL in real-world scenarios. To address these shortcomings, our work focuses on enhancing the reward formulation by defining a set of driving objectives and structuring them hierarchically. Furthermore, we discuss the formulation of these objectives in a normalized manner to transparently determine their contribution to the overall reward. Additionally, we introduce a novel risk-aware objective for various driving interactions based on a two-dimensional ellipsoid function and an extension of Responsibility-Sensitive Safety (RSS) concepts. We evaluate the efficacy of our proposed reward in unsignalized intersection scenarios with varying traffic densities. The approach decreases collision rates by 21\% on average compared to baseline rewards and consistently surpasses them in route progress and cumulative reward, demonstrating its capability to promote safer driving behaviors while maintaining high-performance levels.
Abstract:Reinforcement learning has emerged as an important approach for autonomous driving. A reward function is used in reinforcement learning to establish the learned skill objectives and guide the agent toward the optimal policy. Since autonomous driving is a complex domain with partly conflicting objectives with varying degrees of priority, developing a suitable reward function represents a fundamental challenge. This paper aims to highlight the gap in such function design by assessing different proposed formulations in the literature and dividing individual objectives into Safety, Comfort, Progress, and Traffic Rules compliance categories. Additionally, the limitations of the reviewed reward functions are discussed, such as objectives aggregation and indifference to driving context. Furthermore, the reward categories are frequently inadequately formulated and lack standardization. This paper concludes by proposing future research that potentially addresses the observed shortcomings in rewards, including a reward validation framework and structured rewards that are context-aware and able to resolve conflicts.