Alert button
Picture for Niklas Deckers

Niklas Deckers

Alert button


Evaluating Generative Ad Hoc Information Retrieval

Nov 08, 2023
Lukas Gienapp, Harrisen Scells, Niklas Deckers, Janek Bevendorff, Shuai Wang, Johannes Kiesel, Shahbaz Syed, Maik Fröbe, Guide Zucoon, Benno Stein, Matthias Hagen, Martin Potthast

Recent advances in large language models have enabled the development of viable generative information retrieval systems. A generative retrieval system returns a grounded generated text in response to an information need instead of the traditional document ranking. Quantifying the utility of these types of responses is essential for evaluating generative retrieval systems. As the established evaluation methodology for ranking-based ad hoc retrieval may seem unsuitable for generative retrieval, new approaches for reliable, repeatable, and reproducible experimentation are required. In this paper, we survey the relevant information retrieval and natural language processing literature, identify search tasks and system architectures in generative retrieval, develop a corresponding user model, and study its operationalization. This theoretical analysis provides a foundation and new insights for the evaluation of generative ad hoc retrieval systems.

* 14 pages, 5 figures, 1 table 
Viaarxiv icon

Manipulating Embeddings of Stable Diffusion Prompts

Aug 23, 2023
Niklas Deckers, Julia Peters, Martin Potthast

Figure 1 for Manipulating Embeddings of Stable Diffusion Prompts
Figure 2 for Manipulating Embeddings of Stable Diffusion Prompts
Figure 3 for Manipulating Embeddings of Stable Diffusion Prompts
Figure 4 for Manipulating Embeddings of Stable Diffusion Prompts

Generative text-to-image models such as Stable Diffusion allow users to generate images based on a textual description, the prompt. Changing the prompt is still the primary means for the user to change a generated image as desired. However, changing the image by reformulating the prompt remains a difficult process of trial and error, which has led to the emergence of prompt engineering as a new field of research. We propose and analyze methods to change the embedding of a prompt directly instead of the prompt text. It allows for more fine-grained and targeted control that takes into account user intentions. Our approach treats the generative text-to-image model as a continuous function and passes gradients between the image space and the prompt embedding space. By addressing different user interaction problems, we can apply this idea in three scenarios: (1) Optimization of a metric defined in image space that could measure, for example, image style. (2) Assistance of users in creative tasks by enabling them to navigate the image space along a selection of directions of "near" prompt embeddings. (3) Changing the embedding of the prompt to include information that the user has seen in a particular seed but finds difficult to describe in the prompt. Our experiments demonstrate the feasibility of the described methods.

Viaarxiv icon

The Information Retrieval Experiment Platform

May 30, 2023
Maik Fröbe, Jan Heinrich Reimer, Sean MacAvaney, Niklas Deckers, Simon Reich, Janek Bevendorff, Benno Stein, Matthias Hagen, Martin Potthast

Figure 1 for The Information Retrieval Experiment Platform
Figure 2 for The Information Retrieval Experiment Platform
Figure 3 for The Information Retrieval Experiment Platform
Figure 4 for The Information Retrieval Experiment Platform

We integrate ir_datasets, ir_measures, and PyTerrier with TIRA in the Information Retrieval Experiment Platform (TIREx) to promote more standardized, reproducible, scalable, and even blinded retrieval experiments. Standardization is achieved when a retrieval approach implements PyTerrier's interfaces and the input and output of an experiment are compatible with ir_datasets and ir_measures. However, none of this is a must for reproducibility and scalability, as TIRA can run any dockerized software locally or remotely in a cloud-native execution environment. Version control and caching ensure efficient (re)execution. TIRA allows for blind evaluation when an experiment runs on a remote server or cloud not under the control of the experimenter. The test data and ground truth are then hidden from public access, and the retrieval software has to process them in a sandbox that prevents data leaks. We currently host an instance of TIREx with 15 corpora (1.9 billion documents) on which 32 shared retrieval tasks are based. Using Docker images of 50 standard retrieval approaches, we automatically evaluated all approaches on all tasks (50 $\cdot$ 32 = 1,600~runs) in less than a week on a midsize cluster (1,620 CPU cores and 24 GPUs). This instance of TIREx is open for submissions and will be integrated with the IR Anthology, as well as released open source.

* 11 pages. To be published in the proceedings of SIGIR 2023 
Viaarxiv icon

The Infinite Index: Information Retrieval on Generative Text-To-Image Models

Dec 14, 2022
Niklas Deckers, Maik Fröbe, Johannes Kiesel, Gianluca Pandolfo, Christopher Schröder, Benno Stein, Martin Potthast

Figure 1 for The Infinite Index: Information Retrieval on Generative Text-To-Image Models
Figure 2 for The Infinite Index: Information Retrieval on Generative Text-To-Image Models
Figure 3 for The Infinite Index: Information Retrieval on Generative Text-To-Image Models
Figure 4 for The Infinite Index: Information Retrieval on Generative Text-To-Image Models

The text-to-image model Stable Diffusion has recently become very popular. Only weeks after its open source release, millions are experimenting with image generation. This is due to its ease of use, since all it takes is a brief description of the desired image to "prompt" the generative model. Rarely do the images generated for a new prompt immediately meet the user's expectations. Usually, an iterative refinement of the prompt ("prompt engineering") is necessary for satisfying images. As a new perspective, we recast image prompt engineering as interactive image retrieval - on an "infinite index". Thereby, a prompt corresponds to a query and prompt engineering to query refinement. Selected image-prompt pairs allow direct relevance feedback, as the model can modify an image for the refined prompt. This is a form of one-sided interactive retrieval, where the initiative is on the user side, whereas the server side remains stateless. In light of an extensive literature review, we develop these parallels in detail and apply the findings to a case study of a creative search task on such a model. We note that the uncertainty in searching an infinite index is virtually never-ending. We also discuss future research opportunities related to retrieval models specialized for generative models and interactive generative image retrieval. The application of IR technology, such as query reformulation and relevance feedback, will contribute to improved workflows when using generative models, while the notion of an infinite index raises new challenges in IR research.

* Accepted at CHIIR 2023 
Viaarxiv icon

WARC-DL: Scalable Web Archive Processing for Deep Learning

Sep 25, 2022
Niklas Deckers, Martin Potthast

Figure 1 for WARC-DL: Scalable Web Archive Processing for Deep Learning

Web archives have grown to petabytes. In addition to providing invaluable background knowledge on many social and cultural developments over the last 30 years, they also provide vast amounts of training data for machine learning. To benefit from recent developments in Deep Learning, the use of web archives requires a scalable solution for their processing that supports inference with and training of neural networks. To date, there is no publicly available library for processing web archives in this way, and some existing applications use workarounds. This paper presents WARC-DL, a deep learning-enabled pipeline for web archive processing that scales to petabytes.

* Submitted to OSSYM 2022 - 4th International Open Search Symposium 
Viaarxiv icon

Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

Jun 10, 2022
Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramírez, Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites, Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang, Gonzalo Jaimovitch-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze, Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Simon, James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi, Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramón Risco Delgado, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Timothy Telleen-Lawton, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, Ziyi Wu

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.

* 27 pages, 17 figures + references and appendices, repo: 
Viaarxiv icon

The Importance of Suppressing Domain Style in Authorship Analysis

May 29, 2020
Sebastian Bischoff, Niklas Deckers, Marcel Schliebs, Ben Thies, Matthias Hagen, Efstathios Stamatatos, Benno Stein, Martin Potthast

Figure 1 for The Importance of Suppressing Domain Style in Authorship Analysis
Figure 2 for The Importance of Suppressing Domain Style in Authorship Analysis
Figure 3 for The Importance of Suppressing Domain Style in Authorship Analysis
Figure 4 for The Importance of Suppressing Domain Style in Authorship Analysis

The prerequisite of many approaches to authorship analysis is a representation of writing style. But despite decades of research, it still remains unclear to what extent commonly used and widely accepted representations like character trigram frequencies actually represent an author's writing style, in contrast to more domain-specific style components or even topic. We address this shortcoming for the first time in a novel experimental setup of fixed authors but swapped domains between training and testing. With this setup, we reveal that approaches using character trigram features are highly susceptible to favor domain information when applied without attention to domains, suffering drops of up to 55.4 percentage points in classification accuracy under domain swapping. We further propose a new remedy based on domain-adversarial learning and compare it to ones from the literature based on heuristic rules. Both can work well, reducing accuracy losses under domain swapping to 3.6% and 3.9%, respectively.

Viaarxiv icon

leave a trace - A People Tracking System Meets Anomaly Detection

Jul 20, 2017
Dominik Rueß, Konstantinos Amplianitis, Niklas Deckers, Michele Adduci, Kristian Manthey, Ralf Reulke

Figure 1 for leave a trace - A People Tracking System Meets Anomaly Detection
Figure 2 for leave a trace - A People Tracking System Meets Anomaly Detection
Figure 3 for leave a trace - A People Tracking System Meets Anomaly Detection
Figure 4 for leave a trace - A People Tracking System Meets Anomaly Detection

Video surveillance always had a negative connotation, among others because of the loss of privacy and because it may not automatically increase public safety. If it was able to detect atypical (i.e. dangerous) situations in real time, autonomously and anonymously, this could change. A prerequisite for this is a reliable automatic detection of possibly dangerous situations from video data. This is done classically by object extraction and tracking. From the derived trajectories, we then want to determine dangerous situations by detecting atypical trajectories. However, due to ethical considerations it is better to develop such a system on data without people being threatened or even harmed, plus with having them know that there is such a tracking system installed. Another important point is that these situations do not occur very often in real, public CCTV areas and may be captured properly even less. In the artistic project leave a trace the tracked objects, people in an atrium of a institutional building, become actor and thus part of the installation. Visualisation in real-time allows interaction by these actors, which in turn creates many atypical interaction situations on which we can develop our situation detection. The data set has evolved over three years and hence, is huge. In this article we describe the tracking system and several approaches for the detection of atypical trajectories.

Viaarxiv icon