Abstract:Recent advances in reinforcement learning (RL) have demonstrated the powerful exploration capabilities and multimodality of generative diffusion-based policies. While substantial progress has been made in offline RL and off-policy RL settings, integrating diffusion policies into on-policy frameworks like PPO remains underexplored. This gap is particularly significant given the widespread use of large-scale parallel GPU-accelerated simulators, such as IsaacLab, which are optimized for on-policy RL algorithms and enable rapid training of complex robotic tasks. A key challenge lies in computing state-action log-likelihoods under diffusion policies, which is straightforward for Gaussian policies but intractable for flow-based models due to irreversible forward-reverse processes and discretization errors (e.g., Euler-Maruyama approximations). To bridge this gap, we propose GenPO, a generative policy optimization framework that leverages exact diffusion inversion to construct invertible action mappings. GenPO introduces a novel doubled dummy action mechanism that enables invertibility via alternating updates, resolving log-likelihood computation barriers. Furthermore, we also use the action log-likelihood for unbiased entropy and KL divergence estimation, enabling KL-adaptive learning rates and entropy regularization in on-policy updates. Extensive experiments on eight IsaacLab benchmarks, including legged locomotion (Ant, Humanoid, Anymal-D, Unitree H1, Go2), dexterous manipulation (Shadow Hand), aerial control (Quadcopter), and robotic arm tasks (Franka), demonstrate GenPO's superiority over existing RL baselines. Notably, GenPO is the first method to successfully integrate diffusion policies into on-policy RL, unlocking their potential for large-scale parallelized training and real-world robotic deployment.
Abstract:Model calibration seeks to ensure that models produce confidence scores that accurately reflect the true likelihood of their predictions being correct. However, existing calibration approaches are fundamentally tied to datasets of one-hot labels implicitly assuming full certainty in all the annotations. Such datasets are effective for classification but provides insufficient knowledge of uncertainty for model calibration, necessitating the curation of datasets with numerically rich ground-truth confidence values. However, due to the scarcity of uncertain visual examples, such samples are not easily available as real datasets. In this paper, we introduce calibration-aware data augmentation to create synthetic datasets of diverse samples and their ground-truth uncertainty. Specifically, we present Calibration-aware Semantic Mixing (CSM), a novel framework that generates training samples with mixed class characteristics and annotates them with distinct confidence scores via diffusion models. Based on this framework, we propose calibrated reannotation to tackle the misalignment between the annotated confidence score and the mixing ratio during the diffusion reverse process. Besides, we explore the loss functions that better fit the new data representation paradigm. Experimental results demonstrate that CSM achieves superior calibration compared to the state-of-the-art calibration approaches. Code is available at github.com/E-Galois/CSM.
Abstract:3D affordance segmentation aims to link human instructions to touchable regions of 3D objects for embodied manipulations. Existing efforts typically adhere to single-object, single-affordance paradigms, where each affordance type or explicit instruction strictly corresponds to a specific affordance region and are unable to handle long-horizon tasks. Such a paradigm cannot actively reason about complex user intentions that often imply sequential affordances. In this paper, we introduce the Sequential 3D Affordance Reasoning task, which extends the traditional paradigm by reasoning from cumbersome user intentions and then decomposing them into a series of segmentation maps. Toward this, we construct the first instruction-based affordance segmentation benchmark that includes reasoning over both single and sequential affordances, comprising 180K instruction-point cloud pairs. Based on the benchmark, we propose our model, SeqAfford, to unlock the 3D multi-modal large language model with additional affordance segmentation abilities, which ensures reasoning with world knowledge and fine-grained affordance grounding in a cohesive framework. We further introduce a multi-granular language-point integration module to endow 3D dense prediction. Extensive experimental evaluations show that our model excels over well-established methods and exhibits open-world generalization with sequential reasoning abilities.
Abstract:Sketch-based 3D shape retrieval (SBSR) is an important yet challenging task, which has drawn more and more attention in recent years. Existing approaches address the problem in a restricted setting, without appropriately simulating real application scenarios. To mimic the realistic setting, in this track, we adopt large-scale sketches drawn by amateurs of different levels of drawing skills, as well as a variety of 3D shapes including not only CAD models but also models scanned from real objects. We define two SBSR tasks and construct two benchmarks consisting of more than 46,000 CAD models, 1,700 realistic models, and 145,000 sketches in total. Four teams participated in this track and submitted 15 runs for the two tasks, evaluated by 7 commonly-adopted metrics. We hope that, the benchmarks, the comparative results, and the open-sourced evaluation code will foster future research in this direction among the 3D object retrieval community.