Picture for Haochang Shou

Haochang Shou

from the iSTAGING consortium, for the ADNI

NeuroSynth: MRI-Derived Neuroanatomical Generative Models and Associated Dataset of 18,000 Samples

Add code
Jul 17, 2024
Viaarxiv icon

Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering

Add code
Jan 25, 2023
Figure 1 for Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering
Figure 2 for Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering
Figure 3 for Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering
Viaarxiv icon

Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics

Add code
Oct 25, 2021
Figure 1 for Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
Figure 2 for Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
Figure 3 for Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
Figure 4 for Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
Viaarxiv icon

Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning

Add code
Sep 08, 2021
Figure 1 for Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning
Figure 2 for Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning
Figure 3 for Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning
Figure 4 for Disentangling Alzheimer's disease neurodegeneration from typical brain aging using machine learning
Viaarxiv icon

Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease

Add code
Feb 24, 2021
Figure 1 for Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease
Figure 2 for Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease
Figure 3 for Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease
Figure 4 for Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease
Viaarxiv icon

Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging

Add code
Oct 11, 2020
Figure 1 for Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
Figure 2 for Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
Figure 3 for Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
Figure 4 for Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
Viaarxiv icon