Department of Computer Science and Engineering, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
Abstract:The image-based multimodal automatic speech recognition (ASR) model enhances speech recognition performance by incorporating audio-related image. However, some works suggest that introducing image information to model does not help improving ASR performance. In this paper, we propose a novel approach effectively utilizing audio-related image information and set up VHASR, a multimodal speech recognition system that uses vision as hotwords to strengthen the model's speech recognition capability. Our system utilizes a dual-stream architecture, which firstly transcribes the text on the two streams separately, and then combines the outputs. We evaluate the proposed model on four datasets: Flickr8k, ADE20k, COCO, and OpenImages. The experimental results show that VHASR can effectively utilize key information in images to enhance the model's speech recognition ability. Its performance not only surpasses unimodal ASR, but also achieves SOTA among existing image-based multimodal ASR.
Abstract:Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities. In-Context Learning (ICL) and Parameter-Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting LLMs to downstream tasks. ICL typically constructs a few-shot learning scenario, either manually or by setting up a Retrieval-Augmented Generation (RAG) system, helping models quickly grasp domain knowledge or question-answering patterns without changing model parameters. However, this approach involves trade-offs, such as slower inference speed and increased space occupancy. PEFT assists the model in adapting to tasks through minimal parameter modifications, but the training process still demands high hardware requirements, even with a small number of parameters involved. To address these challenges, we propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning, maintaining low inference costs. RTD constructs a reference datastore from the provided training examples and optimizes the LLM's final vocabulary distribution by flexibly selecting suitable references based on the input, resulting in more trustable responses and enabling the model to adapt to downstream tasks at a low cost. Experimental evaluations on various LLMs using different benchmarks demonstrate that RTD establishes a new paradigm for augmenting models to downstream tasks. Furthermore, our method exhibits strong orthogonality with traditional methods, allowing for concurrent usage.
Abstract:Chinese Spelling Correction (CSC) stands as a foundational Natural Language Processing (NLP) task, which primarily focuses on the correction of erroneous characters in Chinese texts. Certain existing methodologies opt to disentangle the error correction process, employing an additional error detector to pinpoint error positions. However, owing to the inherent performance limitations of error detector, precision and recall are like two sides of the coin which can not be both facing up simultaneously. Furthermore, it is also worth investigating how the error position information can be judiciously applied to assist the error correction. In this paper, we introduce a novel approach based on error detector-corrector framework. Our detector is designed to yield two error detection results, each characterized by high precision and recall. Given that the occurrence of errors is context-dependent and detection outcomes may be less precise, we incorporate the error detection results into the CSC task using an innovative feature fusion strategy and a selective masking strategy. Empirical experiments conducted on mainstream CSC datasets substantiate the efficacy of our proposed method.
Abstract:Safety alignment is indispensable for Large language models (LLMs) to defend threats from malicious instructions. However, recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue, limiting their helpfulness. In this paper, we propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns in aligned LLMs. First, SCANS extracts the refusal steering vectors within the activation space and utilizes vocabulary projection to anchor some specific safety-critical layers which influence model refusal behavior. Second, by tracking the hidden state transition, SCANS identifies the steering direction and steers the model behavior accordingly, achieving a balance between exaggerated safety and adequate safety. Experiments show that SCANS achieves new state-of-the-art performance on XSTest and OKTest benchmarks, without impairing their defense capability against harmful queries and maintaining almost unchanged model capability.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities. Their powerful generative abilities enable flexible responses based on various queries or instructions. Emerging as widely adopted generalists for diverse tasks, LLMs are still vulnerable to backdoors. This paper proposes an editing-based generative backdoor, named MEGen, aiming to create a customized backdoor for NLP tasks with the least side effects. In our approach, we first leverage a language model to insert a trigger selected on fixed metrics into the input, then design a pipeline of model editing to directly embed a backdoor into an LLM. By adjusting a small set of local parameters with a mini-batch of samples, MEGen significantly enhances time efficiency and achieves high robustness. Experimental results indicate that our backdoor attack strategy achieves a high attack success rate on poison data while maintaining the model's performance on clean data. Notably, the backdoored model, when triggered, can freely output pre-set dangerous information while successfully completing downstream tasks. This suggests that future LLM applications could be guided to deliver certain dangerous information, thus altering the LLM's generative style. We believe this approach provides insights for future LLM applications and the execution of backdoor attacks on conversational AI systems.
Abstract:The Turing test examines whether AIs can exhibit human-like behaviour in natural language conversations. Traditional Turing tests adopt a rigid dialogue format where each participant sends only one message each time and require continuous human involvement to direct the entire interaction with the test subject. This fails to reflect a natural conversational style and hinders the evaluation of Large Language Models (LLMs) in complex and prolonged dialogues. This paper proposes the Self-Directed Turing Test, which extends the original test with a burst dialogue format, allowing more dynamic exchanges by multiple consecutive messages. It further efficiently reduces human workload by having the LLM self-direct the majority of the test process, iteratively generating dialogues that simulate its interaction with humans. With the pseudo-dialogue history, the model then engages in a shorter dialogue with a human, which is paired with a human-human conversation on the same topic to be judged using questionnaires. We introduce the X-Turn Pass-Rate metric to assess the human likeness of LLMs across varying durations. While LLMs like GPT-4 initially perform well, achieving pass rates of 51.9% and 38.9% during 3 turns and 10 turns of dialogues respectively, their performance drops as the dialogue progresses, which underscores the difficulty in maintaining consistency in the long term.
Abstract:Retrosynthesis analysis is pivotal yet challenging in drug discovery and organic chemistry. Despite the proliferation of computational tools over the past decade, AI-based systems often fall short in generalizing across diverse reaction types and exploring alternative synthetic pathways. This paper presents BatGPT-Chem, a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction. Integrating chemical tasks via a unified framework of natural language and SMILES notation, this approach synthesizes extensive instructional data from an expansive chemical database. Employing both autoregressive and bidirectional training techniques across over one hundred million instances, BatGPT-Chem captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions and exhibiting strong zero-shot capabilities. Superior to existing AI methods, our model demonstrates significant advancements in generating effective strategies for complex molecules, as validated by stringent benchmark tests. BatGPT-Chem not only boosts the efficiency and creativity of retrosynthetic analysis but also establishes a new standard for computational tools in synthetic design. This development empowers chemists to adeptly address the synthesis of novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science. We release our trial platform at \url{https://www.batgpt.net/dapp/chem}.
Abstract:Game development is a highly specialized task that relies on a complex game engine powered by complex programming languages, preventing many gaming enthusiasts from handling it. This paper introduces the Interaction-driven Game Engine (IGE) powered by LLM, which allows everyone to develop a custom game using natural language through Human-LLM interaction. To enable an LLM to function as an IGE, we instruct it to perform the following processes in each turn: (1) $P_{script}$ : configure the game script segment based on the user's input; (2) $P_{code}$ : generate the corresponding code snippet based on the game script segment; (3) $P_{utter}$ : interact with the user, including guidance and feedback. We propose a data synthesis pipeline based on the LLM to generate game script-code pairs and interactions from a few manually crafted seed data. We propose a three-stage progressive training strategy to transfer the dialogue-based LLM to our IGE smoothly. We construct an IGE for poker games as a case study and comprehensively evaluate it from two perspectives: interaction quality and code correctness. The code and data are available at \url{https://github.com/alterego238/IGE}.
Abstract:In this paper, we focus on \emph{virtual world}, a cyberspace where people can live in. An ideal virtual world shares great similarity with our real world. One of the crucial aspects is its evolving nature, reflected by the individuals' capacity to grow and thereby influence the objective world. Such dynamics is unpredictable and beyond the reach of existing systems. For this, we propose a special engine called \emph{Delta-Engine} to drive this virtual world. $\Delta$ associates the world's evolution to the engine's expansion. A delta-engine consists of a base engine and a neural proxy. Given an observation, the proxy generates new code based on the base engine through the process of \emph{incremental prediction}. This paper presents a full-stack introduction to the delta-engine. The key feature of the delta-engine is its scalability to unknown elements within the world, Technically, it derives from the prefect co-work of the neural proxy and the base engine, and the alignment with high-quality data. We an engine-oriented fine-tuning method that embeds the base engine into the proxy. We then discuss a human-AI collaborative design process to produce novel and interesting data efficiently. Eventually, we propose three evaluation principles to comprehensively assess the performance of a delta engine: naive evaluation, incremental evaluation, and adversarial evaluation. Our code, data, and models are open-sourced at \url{https://github.com/gingasan/delta-engine}.
Abstract:This paper investigates the faithfulness of multimodal large language model (MLLM) agents in the graphical user interface (GUI) environment, aiming to address the research question of whether multimodal GUI agents can be distracted by environmental context. A general setting is proposed where both the user and the agent are benign, and the environment, while not malicious, contains unrelated content. A wide range of MLLMs are evaluated as GUI agents using our simulated dataset, following three working patterns with different levels of perception. Experimental results reveal that even the most powerful models, whether generalist agents or specialist GUI agents, are susceptible to distractions. While recent studies predominantly focus on the helpfulness (i.e., action accuracy) of multimodal agents, our findings indicate that these agents are prone to environmental distractions, resulting in unfaithful behaviors. Furthermore, we switch to the adversarial perspective and implement environment injection, demonstrating that such unfaithfulness can be exploited, leading to unexpected risks.