Abstract:Significant progress has been made in spoken question answering (SQA) in recent years. However, many existing methods, including large audio language models, struggle with processing long audio. Follow the success of retrieval augmented generation, a speech-related retriever shows promising in help preprocessing long-form speech. But the performance of existing speech-related retrievers is lacking. To address this challenge, we propose CLSR, an end-to-end contrastive language-speech retriever that efficiently extracts question-relevant segments from long audio recordings for downstream SQA task. Unlike conventional speech-text contrastive models, CLSR incorporates an intermediate step that converts acoustic features into text-like representations prior to alignment, thereby more effectively bridging the gap between modalities. Experimental results across four cross-modal retrieval datasets demonstrate that CLSR surpasses both end-to-end speech related retrievers and pipeline approaches combining speech recognition with text retrieval, providing a robust foundation for advancing practical long-form SQA applications.




Abstract:Spoken language understanding (SLU) is a structure prediction task in the field of speech. Recently, many works on SLU that treat it as a sequence-to-sequence task have achieved great success. However, This method is not suitable for simultaneous speech recognition and understanding. In this paper, we propose a joint speech recognition and structure learning framework (JSRSL), an end-to-end SLU model based on span, which can accurately transcribe speech and extract structured content simultaneously. We conduct experiments on name entity recognition and intent classification using the Chinese dataset AISHELL-NER and the English dataset SLURP. The results show that our proposed method not only outperforms the traditional sequence-to-sequence method in both transcription and extraction capabilities but also achieves state-of-the-art performance on the two datasets.




Abstract:The image-based multimodal automatic speech recognition (ASR) model enhances speech recognition performance by incorporating audio-related image. However, some works suggest that introducing image information to model does not help improving ASR performance. In this paper, we propose a novel approach effectively utilizing audio-related image information and set up VHASR, a multimodal speech recognition system that uses vision as hotwords to strengthen the model's speech recognition capability. Our system utilizes a dual-stream architecture, which firstly transcribes the text on the two streams separately, and then combines the outputs. We evaluate the proposed model on four datasets: Flickr8k, ADE20k, COCO, and OpenImages. The experimental results show that VHASR can effectively utilize key information in images to enhance the model's speech recognition ability. Its performance not only surpasses unimodal ASR, but also achieves SOTA among existing image-based multimodal ASR.