Alert button
Picture for Alexander Valentinitsch

Alexander Valentinitsch

Alert button

VerSe: A Vertebrae Labelling and Segmentation Benchmark

Jan 24, 2020
Anjany Sekuboyina, Amirhossein Bayat, Malek E. Husseini, Maximilian Löffler, Markus Rempfler, Jan Kukačka, Giles Tetteh, Alexander Valentinitsch, Christian Payer, Martin Urschler, Maodong Chen, Dalong Cheng, Nikolas Lessmann, Yujin Hu, Tianfu Wang, Dong Yang, Daguang Xu, Felix Ambellan, Stefan Zachowk, Tao Jiang, Xinjun Ma, Christoph Angerman, Xin Wang, Qingyue Wei, Kevin Brown, Matthias Wolf, Alexandre Kirszenberg, Élodie Puybareauq, Björn H. Menze, Jan S. Kirschke

Figure 1 for VerSe: A Vertebrae Labelling and Segmentation Benchmark
Figure 2 for VerSe: A Vertebrae Labelling and Segmentation Benchmark
Figure 3 for VerSe: A Vertebrae Labelling and Segmentation Benchmark
Figure 4 for VerSe: A Vertebrae Labelling and Segmentation Benchmark
Viaarxiv icon

Probabilistic Point Cloud Reconstructions for Vertebral Shape Analysis

Aug 02, 2019
Anjany Sekuboyina, Markus Rempfler, Alexander Valentinitsch, Maximilian Loeffler, Jan S. Kirschke, Bjoern H. Menze

Figure 1 for Probabilistic Point Cloud Reconstructions for Vertebral Shape Analysis
Figure 2 for Probabilistic Point Cloud Reconstructions for Vertebral Shape Analysis
Figure 3 for Probabilistic Point Cloud Reconstructions for Vertebral Shape Analysis
Figure 4 for Probabilistic Point Cloud Reconstructions for Vertebral Shape Analysis
Viaarxiv icon

Adversarially Learning a Local Anatomical Prior: Vertebrae Labelling with 2D reformations

Mar 03, 2019
Anjany Sekuboyina, Markus Rempfler, Alexander Valentinitsch, Jan S. Kirschke, Bjoern H. Menze

Figure 1 for Adversarially Learning a Local Anatomical Prior: Vertebrae Labelling with 2D reformations
Figure 2 for Adversarially Learning a Local Anatomical Prior: Vertebrae Labelling with 2D reformations
Figure 3 for Adversarially Learning a Local Anatomical Prior: Vertebrae Labelling with 2D reformations
Figure 4 for Adversarially Learning a Local Anatomical Prior: Vertebrae Labelling with 2D reformations
Viaarxiv icon

Btrfly Net: Vertebrae Labelling with Energy-based Adversarial Learning of Local Spine Prior

Apr 04, 2018
Anjany Sekuboyina, Markus Rempfler, Jan Kukačka, Giles Tetteh, Alexander Valentinitsch, Jan S. Kirschke, Bjoern H. Menze

Figure 1 for Btrfly Net: Vertebrae Labelling with Energy-based Adversarial Learning of Local Spine Prior
Figure 2 for Btrfly Net: Vertebrae Labelling with Energy-based Adversarial Learning of Local Spine Prior
Figure 3 for Btrfly Net: Vertebrae Labelling with Energy-based Adversarial Learning of Local Spine Prior
Figure 4 for Btrfly Net: Vertebrae Labelling with Energy-based Adversarial Learning of Local Spine Prior
Viaarxiv icon

A Localisation-Segmentation Approach for Multi-label Annotation of Lumbar Vertebrae using Deep Nets

Mar 13, 2017
Anjany Sekuboyina, Alexander Valentinitsch, Jan S. Kirschke, Bjoern H. Menze

Figure 1 for A Localisation-Segmentation Approach for Multi-label Annotation of Lumbar Vertebrae using Deep Nets
Figure 2 for A Localisation-Segmentation Approach for Multi-label Annotation of Lumbar Vertebrae using Deep Nets
Figure 3 for A Localisation-Segmentation Approach for Multi-label Annotation of Lumbar Vertebrae using Deep Nets
Figure 4 for A Localisation-Segmentation Approach for Multi-label Annotation of Lumbar Vertebrae using Deep Nets
Viaarxiv icon

SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks

Feb 20, 2017
Patrick Ferdinand Christ, Florian Ettlinger, Georgios Kaissis, Sebastian Schlecht, Freba Ahmaddy, Felix Grün, Alexander Valentinitsch, Seyed-Ahmad Ahmadi, Rickmer Braren, Bjoern Menze

Figure 1 for SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks
Figure 2 for SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks
Figure 3 for SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks
Figure 4 for SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks
Viaarxiv icon