Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Optimizing Data Collection in Deep Reinforcement Learning


Jul 15, 2022
James Gleeson, Daniel Snider, Yvonne Yang, Moshe Gabel, Eyal de Lara, Gennady Pekhimenko

* MLBench 2022 ( https://memani1.github.io/mlbench22/ ) camera ready submission 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence using Federated Evaluation


Oct 08, 2021
Alexandros Karargyris, Renato Umeton, Micah J. Sheller, Alejandro Aristizabal, Johnu George, Srini Bala, Daniel J. Beutel, Victor Bittorf, Akshay Chaudhari, Alexander Chowdhury, Cody Coleman, Bala Desinghu, Gregory Diamos, Debo Dutta, Diane Feddema, Grigori Fursin, Junyi Guo, Xinyuan Huang, David Kanter, Satyananda Kashyap, Nicholas Lane, Indranil Mallick, Pietro Mascagni, Virendra Mehta, Vivek Natarajan, Nikola Nikolov, Nicolas Padoy, Gennady Pekhimenko, Vijay Janapa Reddi, G Anthony Reina, Pablo Ribalta, Jacob Rosenthal, Abhishek Singh, Jayaraman J. Thiagarajan, Anna Wuest, Maria Xenochristou, Daguang Xu, Poonam Yadav, Michael Rosenthal, Massimo Loda, Jason M. Johnson, Peter Mattson


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Distributed Deep Learning in Open Collaborations


Jun 18, 2021
Michael Diskin, Alexey Bukhtiyarov, Max Ryabinin, Lucile Saulnier, Quentin Lhoest, Anton Sinitsin, Dmitry Popov, Dmitry Pyrkin, Maxim Kashirin, Alexander Borzunov, Albert Villanova del Moral, Denis Mazur, Ilia Kobelev, Yacine Jernite, Thomas Wolf, Gennady Pekhimenko

* 30 pages, 9 figures. Code: https://github.com/yandex-research/DeDLOC 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices


Mar 04, 2021
Max Ryabinin, Eduard Gorbunov, Vsevolod Plokhotnyuk, Gennady Pekhimenko

* 41 pages, 6 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

RL-Scope: Cross-Stack Profiling for Deep Reinforcement Learning Workloads


Mar 04, 2021
James Gleeson, Srivatsan Krishnan, Moshe Gabel, Vijay Janapa Reddi, Eyal de Lara, Gennady Pekhimenko

* RL-Scope is an open-source tool available at https://github.com/UofT-EcoSystem/rlscope . Proceedings of the 4th MLSys Conference, 2021. Changes: camera ready for MLSys publication -- shorten abstract, add acknowledgements, minor grammar fixes 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models


Feb 07, 2021
Shang Wang, Peiming Yang, Yuxuan Zheng, Xin Li, Gennady Pekhimenko

* Submission draft (as a preview) to MLSys 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Computational Performance Predictions for Deep Neural Network Training: A Runtime-Based Approach


Jan 31, 2021
Geoffrey X. Yu, Yubo Gao, Pavel Golikov, Gennady Pekhimenko

* 17 pages, 7 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

IOS: Inter-Operator Scheduler for CNN Acceleration


Nov 02, 2020
Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko, Song Han


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
3
>>