Alert button
Picture for Fabian Bamberg

Fabian Bamberg

Alert button

FedNorm: Modality-Based Normalization in Federated Learning for Multi-Modal Liver Segmentation

Add code
Bookmark button
Alert button
May 23, 2022
Tobias Bernecker, Annette Peters, Christopher L. Schlett, Fabian Bamberg, Fabian Theis, Daniel Rueckert, Jakob Weiß, Shadi Albarqouni

Figure 1 for FedNorm: Modality-Based Normalization in Federated Learning for Multi-Modal Liver Segmentation
Figure 2 for FedNorm: Modality-Based Normalization in Federated Learning for Multi-Modal Liver Segmentation
Figure 3 for FedNorm: Modality-Based Normalization in Federated Learning for Multi-Modal Liver Segmentation
Figure 4 for FedNorm: Modality-Based Normalization in Federated Learning for Multi-Modal Liver Segmentation
Viaarxiv icon

An Uncertainty-Aware, Shareable and Transparent Neural Network Architecture for Brain-Age Modeling

Add code
Bookmark button
Alert button
Jul 16, 2021
Tim Hahn, Jan Ernsting, Nils R. Winter, Vincent Holstein, Ramona Leenings, Marie Beisemann, Lukas Fisch, Kelvin Sarink, Daniel Emden, Nils Opel, Ronny Redlich, Jonathan Repple, Dominik Grotegerd, Susanne Meinert, Jochen G. Hirsch, Thoralf Niendorf, Beate Endemann, Fabian Bamberg, Thomas Kröncke, Robin Bülow, Henry Völzke, Oyunbileg von Stackelberg, Ramona Felizitas Sowade, Lale Umutlu, Börge Schmidt, Svenja Caspers, German National Cohort Study Center Consortium, Harald Kugel, Tilo Kircher, Benjamin Risse, Christian Gaser, James H. Cole, Udo Dannlowski, Klaus Berger

Figure 1 for An Uncertainty-Aware, Shareable and Transparent Neural Network Architecture for Brain-Age Modeling
Figure 2 for An Uncertainty-Aware, Shareable and Transparent Neural Network Architecture for Brain-Age Modeling
Figure 3 for An Uncertainty-Aware, Shareable and Transparent Neural Network Architecture for Brain-Age Modeling
Viaarxiv icon

Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks

Add code
Bookmark button
Alert button
Mar 22, 2021
Lukas Fisch, Jan Ernsting, Nils R. Winter, Vincent Holstein, Ramona Leenings, Marie Beisemann, Kelvin Sarink, Daniel Emden, Nils Opel, Ronny Redlich, Jonathan Repple, Dominik Grotegerd, Susanne Meinert, Niklas Wulms, Heike Minnerup, Jochen G. Hirsch, Thoralf Niendorf, Beate Endemann, Fabian Bamberg, Thomas Kröncke, Annette Peters, Robin Bülow, Henry Völzke, Oyunbileg von Stackelberg, Ramona Felizitas Sowade, Lale Umutlu, Börge Schmidt, Svenja Caspers, German National Cohort Study Center Consortium, Harald Kugel, Bernhard T. Baune, Tilo Kircher, Benjamin Risse, Udo Dannlowski, Klaus Berger, Tim Hahn

Figure 1 for Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks
Figure 2 for Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks
Figure 3 for Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks
Figure 4 for Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks
Viaarxiv icon

Fully Automated and Standardized Segmentation of Adipose Tissue Compartments by Deep Learning in Three-dimensional Whole-body MRI of Epidemiological Cohort Studies

Add code
Bookmark button
Alert button
Aug 05, 2020
Thomas Küstner, Tobias Hepp, Marc Fischer, Martin Schwartz, Andreas Fritsche, Hans-Ulrich Häring, Konstantin Nikolaou, Fabian Bamberg, Bin Yang, Fritz Schick, Sergios Gatidis, Jürgen Machann

Figure 1 for Fully Automated and Standardized Segmentation of Adipose Tissue Compartments by Deep Learning in Three-dimensional Whole-body MRI of Epidemiological Cohort Studies
Figure 2 for Fully Automated and Standardized Segmentation of Adipose Tissue Compartments by Deep Learning in Three-dimensional Whole-body MRI of Epidemiological Cohort Studies
Figure 3 for Fully Automated and Standardized Segmentation of Adipose Tissue Compartments by Deep Learning in Three-dimensional Whole-body MRI of Epidemiological Cohort Studies
Figure 4 for Fully Automated and Standardized Segmentation of Adipose Tissue Compartments by Deep Learning in Three-dimensional Whole-body MRI of Epidemiological Cohort Studies
Viaarxiv icon

A Machine-learning framework for automatic reference-free quality assessment in MRI

Add code
Bookmark button
Alert button
Jul 18, 2018
Thomas Küstner, Sergios Gatidis, Annika Liebgott, Martin Schwartz, Lukas Mauch, Petros Martirosian, Holger Schmidt, Nina F. Schwenzer, Konstantin Nikolaou, Fabian Bamberg, Bin Yang, Fritz Schick

Figure 1 for A Machine-learning framework for automatic reference-free quality assessment in MRI
Figure 2 for A Machine-learning framework for automatic reference-free quality assessment in MRI
Figure 3 for A Machine-learning framework for automatic reference-free quality assessment in MRI
Figure 4 for A Machine-learning framework for automatic reference-free quality assessment in MRI
Viaarxiv icon