Alert button
Picture for Thomas Küstner

Thomas Küstner

Alert button

MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision

Add code
Bookmark button
Alert button
Sep 12, 2023
Jianning Li, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R. Memon, Xiaojun Chen, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G. Ellis, Michele R. Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A. Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Emmanuel Audenaert, Claudia Krebs, Timo Van Leeuwen, Evie Vereecke, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H. Bahnsen, Constantin Seibold, Alexander Jaus, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Lars E. Podleska, Matthias A. Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F. Hoyer, Oliver Basu, Thomas Maal, Max J. H. Witjes, Ti-chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Christos Davatzikos, Behrus Puladi, Jens Kleesiek, Jan Egger

Figure 1 for MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Figure 2 for MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Figure 3 for MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Figure 4 for MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Viaarxiv icon

Uncertainty Estimation and Propagation in Accelerated MRI Reconstruction

Add code
Bookmark button
Alert button
Aug 04, 2023
Paul Fischer, Thomas Küstner, Christian F. Baumgartner

Figure 1 for Uncertainty Estimation and Propagation in Accelerated MRI Reconstruction
Figure 2 for Uncertainty Estimation and Propagation in Accelerated MRI Reconstruction
Figure 3 for Uncertainty Estimation and Propagation in Accelerated MRI Reconstruction
Figure 4 for Uncertainty Estimation and Propagation in Accelerated MRI Reconstruction
Viaarxiv icon

Global k-Space Interpolation for Dynamic MRI Reconstruction using Masked Image Modeling

Add code
Bookmark button
Alert button
Jul 24, 2023
Jiazhen Pan, Suprosanna Shit, Özgün Turgut, Wenqi Huang, Hongwei Bran Li, Nil Stolt-Ansó, Thomas Küstner, Kerstin Hammernik, Daniel Rueckert

Figure 1 for Global k-Space Interpolation for Dynamic MRI Reconstruction using Masked Image Modeling
Figure 2 for Global k-Space Interpolation for Dynamic MRI Reconstruction using Masked Image Modeling
Figure 3 for Global k-Space Interpolation for Dynamic MRI Reconstruction using Masked Image Modeling
Figure 4 for Global k-Space Interpolation for Dynamic MRI Reconstruction using Masked Image Modeling
Viaarxiv icon

Reconstruction-driven motion estimation for motion-compensated MR CINE imaging

Add code
Bookmark button
Alert button
Feb 05, 2023
Jiazhen Pan, Wenqi Huang, Daniel Rueckert, Thomas Küstner, Kerstin Hammernik

Figure 1 for Reconstruction-driven motion estimation for motion-compensated MR CINE imaging
Figure 2 for Reconstruction-driven motion estimation for motion-compensated MR CINE imaging
Figure 3 for Reconstruction-driven motion estimation for motion-compensated MR CINE imaging
Figure 4 for Reconstruction-driven motion estimation for motion-compensated MR CINE imaging
Viaarxiv icon

Learning-based and unrolled motion-compensated reconstruction for cardiac MR CINE imaging

Add code
Bookmark button
Alert button
Sep 08, 2022
Jiazhen Pan, Daniel Rueckert, Thomas Küstner, Kerstin Hammernik

Figure 1 for Learning-based and unrolled motion-compensated reconstruction for cardiac MR CINE imaging
Figure 2 for Learning-based and unrolled motion-compensated reconstruction for cardiac MR CINE imaging
Figure 3 for Learning-based and unrolled motion-compensated reconstruction for cardiac MR CINE imaging
Figure 4 for Learning-based and unrolled motion-compensated reconstruction for cardiac MR CINE imaging
Viaarxiv icon

Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging

Add code
Bookmark button
Alert button
Mar 23, 2022
Kerstin Hammernik, Thomas Küstner, Burhaneddin Yaman, Zhengnan Huang, Daniel Rueckert, Florian Knoll, Mehmet Akçakaya

Figure 1 for Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging
Figure 2 for Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging
Figure 3 for Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging
Figure 4 for Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging
Viaarxiv icon

LAPNet: Non-rigid Registration derived in k-space for Magnetic Resonance Imaging

Add code
Bookmark button
Alert button
Jul 19, 2021
Thomas Küstner, Jiazhen Pan, Haikun Qi, Gastao Cruz, Christopher Gilliam, Thierry Blu, Bin Yang, Sergios Gatidis, René Botnar, Claudia Prieto

Figure 1 for LAPNet: Non-rigid Registration derived in k-space for Magnetic Resonance Imaging
Figure 2 for LAPNet: Non-rigid Registration derived in k-space for Magnetic Resonance Imaging
Figure 3 for LAPNet: Non-rigid Registration derived in k-space for Magnetic Resonance Imaging
Figure 4 for LAPNet: Non-rigid Registration derived in k-space for Magnetic Resonance Imaging
Viaarxiv icon

Complementary Time-Frequency Domain Networks for Dynamic Parallel MR Image Reconstruction

Add code
Bookmark button
Alert button
Dec 22, 2020
Chen Qin, Jinming Duan, Kerstin Hammernik, Jo Schlemper, Thomas Küstner, René Botnar, Claudia Prieto, Anthony N. Price, Joseph V. Hajnal, Daniel Rueckert

Figure 1 for Complementary Time-Frequency Domain Networks for Dynamic Parallel MR Image Reconstruction
Figure 2 for Complementary Time-Frequency Domain Networks for Dynamic Parallel MR Image Reconstruction
Figure 3 for Complementary Time-Frequency Domain Networks for Dynamic Parallel MR Image Reconstruction
Figure 4 for Complementary Time-Frequency Domain Networks for Dynamic Parallel MR Image Reconstruction
Viaarxiv icon

Age-Net: An MRI-Based Iterative Framework for Biological Age Estimation

Add code
Bookmark button
Alert button
Sep 22, 2020
Karim Armanious, Sherif Abdulatif, Wenbin Shi, Shashank Salian, Thomas Küstner, Daniel Weiskopf, Tobias Hepp, Sergios Gatidis, Bin Yang

Figure 1 for Age-Net: An MRI-Based Iterative Framework for Biological Age Estimation
Figure 2 for Age-Net: An MRI-Based Iterative Framework for Biological Age Estimation
Figure 3 for Age-Net: An MRI-Based Iterative Framework for Biological Age Estimation
Figure 4 for Age-Net: An MRI-Based Iterative Framework for Biological Age Estimation
Viaarxiv icon

Fully Automated and Standardized Segmentation of Adipose Tissue Compartments by Deep Learning in Three-dimensional Whole-body MRI of Epidemiological Cohort Studies

Add code
Bookmark button
Alert button
Aug 05, 2020
Thomas Küstner, Tobias Hepp, Marc Fischer, Martin Schwartz, Andreas Fritsche, Hans-Ulrich Häring, Konstantin Nikolaou, Fabian Bamberg, Bin Yang, Fritz Schick, Sergios Gatidis, Jürgen Machann

Figure 1 for Fully Automated and Standardized Segmentation of Adipose Tissue Compartments by Deep Learning in Three-dimensional Whole-body MRI of Epidemiological Cohort Studies
Figure 2 for Fully Automated and Standardized Segmentation of Adipose Tissue Compartments by Deep Learning in Three-dimensional Whole-body MRI of Epidemiological Cohort Studies
Figure 3 for Fully Automated and Standardized Segmentation of Adipose Tissue Compartments by Deep Learning in Three-dimensional Whole-body MRI of Epidemiological Cohort Studies
Figure 4 for Fully Automated and Standardized Segmentation of Adipose Tissue Compartments by Deep Learning in Three-dimensional Whole-body MRI of Epidemiological Cohort Studies
Viaarxiv icon